Previous |  Up |  Next

Article

Title: Possible orders of nonassociative Moufang loops (English)
Author: Chein, Orin
Author: Rajah, Andrew
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 2
Year: 2000
Pages: 237-244
.
Category: math
.
Summary: The paper surveys the known results concerning the question: ``For what values of $n$ does there exist a nonassociative Moufang loop of order $n$?'' Proofs of the newest results for $n$ odd, and a complete resolution of the case $n$ even are also presented. (English)
Keyword: Moufang loop
Keyword: order
Keyword: nonassociative
MSC: 20N05
idZBL: Zbl 1038.20045
idMR: MR1780867
.
Date available: 2009-01-08T19:00:36Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119159
.
Reference: [1] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414-431. Zbl 0016.22603, MR 1513147
Reference: [2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245-354. (MR 8, p.134). Zbl 0061.02201, MR 0017288
Reference: [3] Bruck R.H.: A Survey of Binary Systems.Ergeb. Math. Grenzgeb., vol. 20, Springer Verlag, 1968. (MR 20 # 76). Zbl 0141.01401, MR 0093552
Reference: [4] Chein O.: Moufang loops of small order. I.Trans. Amer. Math. Soc. 188 (1974), 31-51. (MR 48 # 8673). Zbl 0286.20088, MR 0330336
Reference: [5] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 197 , Vol 13, Issue 1 (1978), 1-131. (MR 57 # 6271). Zbl 0378.20053, MR 0466391
Reference: [6] Chein O., Pflugfelder H.O.: The smallest Moufang loop.Archiv der Mathematik 22 (1971), 573-576. (MR 45 # 6966). Zbl 0241.20061, MR 0297914
Reference: [7] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393-414. (MR 36 # 5250). Zbl 0155.03901, MR 0222198
Reference: [8] Leong F.: Moufang loops of order $p^{4}$.Nanta Math. 7 (1974), 33-34. (MR 51 # 5826). MR 0369593
Reference: [9] Leong F., Rajah A.: On Moufang loops of odd order $pq^{2}$.J. Algebra 176 (1995), 265-270. (MR 96i # 20082). MR 1345304
Reference: [10] Leong F., Rajah A.: Moufang loops of odd order $p_{1}^{2}p_{2}^{2}...p_m^{2}$.J. Algebra 181 (1996), 876-883 (MR 97i # 20083). MR 1386583
Reference: [11] Leong F., Rajah A.: Moufang loops of odd order $p^{4}q_{1}...q_n$.J. Algebra 184 (1996), 561-569. (MR 97k # 20118). Zbl 0860.20054, MR 1409228
Reference: [12] Leong F., Rajah A.: Moufang loops of odd order $p^{\alpha }q_{1}^{2}...q_n^{2}r_{1}...r_m$.J. Algebra 190 (1997), 474-486. (MR 98b # 20115). Zbl 0874.20046, MR 1441958
Reference: [13] Leong F., Teh P.E.: Moufang loops of orders $2pq$.Bull. of the Malaysian Math. Soc. 15 (1992), 27-29. (MR 93j # 20142). Zbl 0766.20025, MR 1196349
Reference: [14] Leong F., Teh P.E.: Moufang loops of even order.J. Algebra 164 (1994), 409-414. (MR 95b # 20097). Zbl 0804.20050, MR 1271244
Reference: [15] Leong F., Teh P.E., Lim V.K.: Moufang loops of odd order $p^mq_{1}...q_n$.J. Algebra 168 (1994), 348-352. (MR 95g # 20068). Zbl 0814.20054, MR 1289104
Reference: [16] Purtill M.: On Moufang loops of order the product of three primes.J. Algebra 112 (1988), 122-128. (MR 89c # 20120). MR 0921968
Reference: [17] Purtill M.: Corrigendum.J. Algebra 145 (1992), p.262. (MR 92j # 20066). Zbl 0742.20068, MR 1144674
Reference: [18] Rajah A.: Which Moufang loops are associative.Doctoral Dissertation, University Sains Malaysia, 1996. Zbl 1006.20501
Reference: [19] Rajah A., Jamal E.: Moufang loops of order $2m$.Publ. Math. Debrecen 55 (1999), 47-51. Zbl 0933.20053, MR 1708430
Reference: [20] Scott W.R.: Group Theory.Prentice Hall, Englewood Cliffs, NJ, 1964. Zbl 0897.20029, MR 0167513
Reference: [21] Wright C.R.B.: Nilpotency conditions for finite loops.Illinois J. Math. 9 (1965), 399-409. (MR 31 # 5918). Zbl 0135.03701, MR 0181691
Reference: [22] Zorn M.: The theory of alternative rings.Hamb. Abhandl. 8 (1930), 123-147.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-2_3.pdf 205.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo