Previous |  Up |  Next

Article

Title: Construction, properties and applications of finite neofields (English)
Author: Keedwell, A. D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 2
Year: 2000
Pages: 283-297
.
Category: math
.
Summary: We give a short account of the construction and properties of left neofields. Most useful in practice seem to be neofields based on the cyclic group and particularly those having an additional divisibility property, called {\it D-neofields}. We shall give examples of applications to the construction of orthogonal latin squares, to the design of tournaments balanced for residual effects and to cryptography. (English)
Keyword: neofield
Keyword: loop
Keyword: orthomorphism
Keyword: complete mapping
Keyword: orthogonal latin squares
Keyword: cryptography
Keyword: balanced round robin tournament
MSC: 05B15
MSC: 05B30
MSC: 12K99
MSC: 20N05
MSC: 94A60
idZBL: Zbl 1035.12003
idMR: MR1780872
.
Date available: 2009-01-08T19:01:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119164
.
Reference: [A1] Anderson I.: Balancing carry-over effects in tournaments.in Combinatorial Designs and their Applications, Eds. F.C. Holroyd, K.A.S. Quinn, C.Rowley, B.S. Webb, Chapman and Hall/CRC Research Notes in Mathematics, CRC Press, 1999, pp.1-16. Zbl 0958.05016, MR 1678585
Reference: [A2] Artzy R.: On loops with a special property.Proc. Amer. Math. Soc. 6 (1955), 448-453. Zbl 0066.27101, MR 0069804
Reference: [B1] Bruck R.H.: Loops with transitive automorphism groups.Pacific J. Math. 1 (1951), 481-483. Zbl 0044.01101, MR 0045705
Reference: [D1] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Akadémiai Kiadó, Budapest; English Universities Press, London; Academic Press, New York, 1974. MR 0351850
Reference: [D2] Dénes J., Keedwell A.D.: Some applications of non-associative algebraic systems in cryptology.submitted.
Reference: [D3] Doner J.R.: CIP-neofields and Combinatorial Designs.Ph.D. Thesis, University of Michigan, U.S.A., 1972.
Reference: [D4] Dulmage A.L., Mendelsohn N.S., Johnson D.M.: Orthomorphisms of groups and orthogonal latin squares I.Canad. J. Math. 13 (1961), 356-372. Zbl 0097.25102, MR 0124229
Reference: [E1] ElGamal T.: A public key cryptosystem and a signature scheme based on discrete logarithms.IEEE Trans. Information Theory IT-31, 1985, pp.469-472. Zbl 0571.94014, MR 0798552
Reference: [H1] Hsu D.F.: Cyclic neofields and combinatorial designs.Lecture Notes in Mathematics No. 824, Springer, Berlin, 1980. Zbl 0443.16022, MR 0616639
Reference: [H2] Hsu D.F., Keedwell A.D.: Generalized complete mappings, neofields, sequenceable groups and block designs I, II..Pacific J. Math. 111 (1984), 317-332 and 117 (1985), 291-311. MR 0734858
Reference: [K1] Keedwell A.D.: On orthogonal latin squares and a class of neofields.Rend. Mat. e Appl. (5) 25 (1966), 519-561. Zbl 0153.32902, MR 0220611
Reference: [K2] Keedwell A.D.: On property $D$ neofields.Rend. Mat. e Appl. (5) 26 (1967), 383-402. Zbl 0153.33001, MR 0229538
Reference: [K3] Keedwell A.D.: The existence of pathological left neofields.Ars Combinatoria B16 (1983), 161-170. Zbl 0529.16030, MR 0737119
Reference: [K4] Keedwell A.D.: Designing Tournaments with the aid of Latin Squares: a presentation of old and new results.Utilitas Math., to appear. Zbl 0971.05031, MR 1801302
Reference: [K5] Keedwell A.D.: A characterization of the Jacobi logarithms of a finite field.submitted. Zbl 0986.12001
Reference: [M1] MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes.North Holland, Amsterdam, 1977. Zbl 0657.94010
Reference: [M2] Mann H.B.: The construction of orthogonal latin squares.Ann. Math. Statist. 13 (1942), 418-423. Zbl 0060.02706, MR 0007736
Reference: [O1] Odlyzko A.M.: Discrete logarithms in finite fields and their cryptographic significance.in Lecture Notes in Computer Science No. 209; Advances in Cryptology, Proc. Eurocrypt 84, Eds. T. Beth, N. Cot, I. Ingemarsson, Springer, Berlin, 1955, pp.224-314. Zbl 0594.94016, MR 0825593
Reference: [P1] Paige L.J.: Neofields.Duke Math. J. 16 (1949), 39-60. Zbl 0040.30501, MR 0028326
Reference: [R1] Russell K.G.: Balancing carry-over effects in round robin tournaments.Biometrika 67 (1980), 127-131. MR 0570514
Reference: [T1] Tripke A.: Algebraische and Kombinatorische Structuren von Spielplänen mit Anwendung auf ausgewogen Spielpläne.Diploma Thesis, Ruhr-Universität in Bochum, 1983.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-2_8.pdf 260.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo