Previous |  Up |  Next

Article

Title: Global left loop structures on spheres (English)
Author: Kinyon, Michael K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 2
Year: 2000
Pages: 325-346
.
Category: math
.
Summary: On the unit sphere $\Bbb S$ in a real Hilbert space $\bold H$, we derive a binary operation $\odot $ such that $(\Bbb S,\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\bold e_{0}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\Bbb S$. $(\Bbb S,\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\Bbb S,\odot )$ satisfies the left power alternative and left Bol identities ``almost everywhere'' but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\bold e_{0}$ where they have a nonremovable discontinuity. The orthogonal group $O(\bold H)$ is a semidirect product of $(\Bbb S,\odot )$ with its automorphism group. The left loop structure of $(\Bbb S,\odot )$ gives some insight into spherical geometry. (English)
Keyword: loop
Keyword: quasigroup
Keyword: sphere
Keyword: Hilbert space
Keyword: spherical geometry
MSC: 20N05
MSC: 58B25
idZBL: Zbl 1041.20044
idMR: MR1780875
.
Date available: 2009-01-08T19:01:44Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119167
.
Reference: [1] Bruck R.: A Survey of Binary Systems.(3rd printing, corrected), Springer-Verlag, Berlin, 1971. Zbl 0141.01401, MR 0093552
Reference: [2] Chein O., Pflugfelder H.O., Smith J.D.H. (eds.): Quasigroups and Loops: Theory and Applications.Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990. Zbl 0719.20036, MR 1125806
Reference: [3] Gabrieli E., Karzel H.: Reflection geometries over loops.Results Math. 32 (1997), 61-65. Zbl 0922.51007, MR 1464673
Reference: [4] Gabrieli E., Karzel H.: Point-reflection geometries, geometric K-loops and unitary geometries.Results Math. 32 (1997), 66-72. Zbl 0922.51006, MR 1464674
Reference: [5] Gabrieli E., Karzel H.: The reflection structures of generalized co-Minkowski spaces leading to K-loops.Results Math. 32 (1997), 73-79. Zbl 0923.51014, MR 1464675
Reference: [6] Glauberman G.: On loops of odd order.J. Algebra 1 (1964), 374-396. Zbl 0123.01502, MR 0175991
Reference: [7] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Academic Press, New York, 1978. Zbl 0993.53002, MR 0514561
Reference: [8] Karzel H.: Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und $2$-Strukturen mit Rechtecksaxiom.Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. Zbl 0162.24101, MR 0240715
Reference: [9] Kiechle H.: Theory of $K$-loops.Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998. Zbl 0997.20059
Reference: [10] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces.Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13. Zbl 0264.53028, MR 0327962
Reference: [11] Kikkawa M.: The geometry of homogeneous Lie loops.Hiroshima Math. J. 5 (1975), 141-179. MR 0383301
Reference: [12] Kinyon M.K., Jones O.: Loops and semidirect products.to appear in Comm. Algebra. Zbl 0974.20049, MR 1772003
Reference: [13] Klingenberg W.P.A.: Riemannian Geometry.2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995. Zbl 1073.53006, MR 1330918
Reference: [14] Kepka T.: A construction of Bruck loops.Comment. Math. Univ. Carolinae 25 (1984), 591-595. Zbl 0563.20053, MR 0782010
Reference: [15] Kreuzer A.: Inner mappings of Bol loops.Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. MR 1474864
Reference: [16] Loos O.: Symmetric Spaces.vol. 1, Benjamin, New York, 1969. Zbl 0228.53034
Reference: [17] Miheev P.O., Sabinin L.V.: Quasigroups and differential geometry.Chapter XII in 2, pp.357-430. Zbl 0721.53018, MR 1125818
Reference: [18] Nesterov A.I., Sabinin L.V.: Smooth loops, generalized coherent states and geometric phases.Int. J. Theor. Phys. 36 (1997), 1981-1989. Zbl 0883.22020, MR 1476347
Reference: [19] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [20] Robinson D.A.: Bol loops.Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964. Zbl 0803.20053
Reference: [21] Robinson D.A.: A loop-theoretic study of right-sided quasigroups.Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16. Zbl 0414.20058, MR 0552166
Reference: [22] Sabinin L.V.: On the equivalence of categories of loops and homogeneous spaces.Soviet Math. Dokl. 13 (1972), 970-974. Zbl 0291.18006
Reference: [23] Sabinin L.V.: Methods of nonassociative algebra in differential geometry (Russian).Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339. MR 0628734
Reference: [24] Sabinin L.V.: Smooth Quasigroups and Loops.Kluwer Academic Press, Dordrecht, 1999. Zbl 1038.20051, MR 1727714
Reference: [25] Sabinin L.V., Sabinina L.L., Sbitneva L.: On the notion of gyrogroup.Aequationes Math. 56 (1998), 11-17. Zbl 0923.20051, MR 1628291
Reference: [26] Smith J.D.H.: A left loop on the $15$-sphere.J. Algebra 176 (1995), 128-138. Zbl 0841.17004, MR 1345298
Reference: [27] Ungar A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation.Results Math. 16 (1989), 168-179. Zbl 0693.20067, MR 1020224
Reference: [28] Ungar A.A.: Weakly associative groups.Results Math. 17 (1990), 149-168. Zbl 0699.20055, MR 1039282
Reference: [29] Ungar A.A.: Thomas precession and its associated grouplike structure.Amer. J. Phys. 59 (1991), 824-834. MR 1126776
Reference: [30] Ungar A.A.: The holomorphic automorphism group of the complex disk.Aequationes Math. 47 (1994), 240-254. Zbl 0799.20032, MR 1268034
Reference: [31] Ungar A.A.: Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics.Found. Phys. 27 (1997), 881-951. MR 1477047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-2_11.pdf 306.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo