Title:
|
Global left loop structures on spheres (English) |
Author:
|
Kinyon, Michael K. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
2 |
Year:
|
2000 |
Pages:
|
325-346 |
. |
Category:
|
math |
. |
Summary:
|
On the unit sphere $\Bbb S$ in a real Hilbert space $\bold H$, we derive a binary operation $\odot $ such that $(\Bbb S,\odot )$ is a power-associative Kikkawa left loop with two-sided identity $\bold e_{0}$, i.e., it has the left inverse, automorphic inverse, and $A_l$ properties. The operation $\odot $ is compatible with the symmetric space structure of $\Bbb S$. $(\Bbb S,\odot )$ is not a loop, and the right translations which fail to be injective are easily characterized. $(\Bbb S,\odot )$ satisfies the left power alternative and left Bol identities ``almost everywhere'' but not everywhere. Left translations are everywhere analytic; right translations are analytic except at $-\bold e_{0}$ where they have a nonremovable discontinuity. The orthogonal group $O(\bold H)$ is a semidirect product of $(\Bbb S,\odot )$ with its automorphism group. The left loop structure of $(\Bbb S,\odot )$ gives some insight into spherical geometry. (English) |
Keyword:
|
loop |
Keyword:
|
quasigroup |
Keyword:
|
sphere |
Keyword:
|
Hilbert space |
Keyword:
|
spherical geometry |
MSC:
|
20N05 |
MSC:
|
58B25 |
idZBL:
|
Zbl 1041.20044 |
idMR:
|
MR1780875 |
. |
Date available:
|
2009-01-08T19:01:44Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119167 |
. |
Reference:
|
[1] Bruck R.: A Survey of Binary Systems.(3rd printing, corrected), Springer-Verlag, Berlin, 1971. Zbl 0141.01401, MR 0093552 |
Reference:
|
[2] Chein O., Pflugfelder H.O., Smith J.D.H. (eds.): Quasigroups and Loops: Theory and Applications.Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990. Zbl 0719.20036, MR 1125806 |
Reference:
|
[3] Gabrieli E., Karzel H.: Reflection geometries over loops.Results Math. 32 (1997), 61-65. Zbl 0922.51007, MR 1464673 |
Reference:
|
[4] Gabrieli E., Karzel H.: Point-reflection geometries, geometric K-loops and unitary geometries.Results Math. 32 (1997), 66-72. Zbl 0922.51006, MR 1464674 |
Reference:
|
[5] Gabrieli E., Karzel H.: The reflection structures of generalized co-Minkowski spaces leading to K-loops.Results Math. 32 (1997), 73-79. Zbl 0923.51014, MR 1464675 |
Reference:
|
[6] Glauberman G.: On loops of odd order.J. Algebra 1 (1964), 374-396. Zbl 0123.01502, MR 0175991 |
Reference:
|
[7] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Academic Press, New York, 1978. Zbl 0993.53002, MR 0514561 |
Reference:
|
[8] Karzel H.: Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und $2$-Strukturen mit Rechtecksaxiom.Abh. Math. Sem. Univ. Hamburg 32 (1968), 191-206. Zbl 0162.24101, MR 0240715 |
Reference:
|
[9] Kiechle H.: Theory of $K$-loops.Habilitationsschrift, Universität Hamburg, Hamburg, Germany, 1998. Zbl 0997.20059 |
Reference:
|
[10] Kikkawa M.: On some quasigroups of algebraic models of symmetric spaces.Mem. Fac. Lit. Sci. Shimane Univ. (Nat. Sci.) 6 (1973), 9-13. Zbl 0264.53028, MR 0327962 |
Reference:
|
[11] Kikkawa M.: The geometry of homogeneous Lie loops.Hiroshima Math. J. 5 (1975), 141-179. MR 0383301 |
Reference:
|
[12] Kinyon M.K., Jones O.: Loops and semidirect products.to appear in Comm. Algebra. Zbl 0974.20049, MR 1772003 |
Reference:
|
[13] Klingenberg W.P.A.: Riemannian Geometry.2nd ed., Studies in Mathematics I, de Gruyter, New York, 1995. Zbl 1073.53006, MR 1330918 |
Reference:
|
[14] Kepka T.: A construction of Bruck loops.Comment. Math. Univ. Carolinae 25 (1984), 591-595. Zbl 0563.20053, MR 0782010 |
Reference:
|
[15] Kreuzer A.: Inner mappings of Bol loops.Math. Proc. Cambridge Philos. Soc. 123 (1998), 53-57. MR 1474864 |
Reference:
|
[16] Loos O.: Symmetric Spaces.vol. 1, Benjamin, New York, 1969. Zbl 0228.53034 |
Reference:
|
[17] Miheev P.O., Sabinin L.V.: Quasigroups and differential geometry.Chapter XII in 2, pp.357-430. Zbl 0721.53018, MR 1125818 |
Reference:
|
[18] Nesterov A.I., Sabinin L.V.: Smooth loops, generalized coherent states and geometric phases.Int. J. Theor. Phys. 36 (1997), 1981-1989. Zbl 0883.22020, MR 1476347 |
Reference:
|
[19] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, Vol. 7, Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[20] Robinson D.A.: Bol loops.Ph.D. Dissertation, University of Wisconsin, Madison, Wisconsin, 1964. Zbl 0803.20053 |
Reference:
|
[21] Robinson D.A.: A loop-theoretic study of right-sided quasigroups.Ann. Soc. Sci. Bruxelles Sér. I 93 (1979), 7-16. Zbl 0414.20058, MR 0552166 |
Reference:
|
[22] Sabinin L.V.: On the equivalence of categories of loops and homogeneous spaces.Soviet Math. Dokl. 13 (1972), 970-974. Zbl 0291.18006 |
Reference:
|
[23] Sabinin L.V.: Methods of nonassociative algebra in differential geometry (Russian).Supplement to the Russian transl. of S. Kobayashi, K. Nomizu, ``Foundations of Differential Geometry'', vol. 1, Nauka, Moscow, 1981, pp. 293-339. MR 0628734 |
Reference:
|
[24] Sabinin L.V.: Smooth Quasigroups and Loops.Kluwer Academic Press, Dordrecht, 1999. Zbl 1038.20051, MR 1727714 |
Reference:
|
[25] Sabinin L.V., Sabinina L.L., Sbitneva L.: On the notion of gyrogroup.Aequationes Math. 56 (1998), 11-17. Zbl 0923.20051, MR 1628291 |
Reference:
|
[26] Smith J.D.H.: A left loop on the $15$-sphere.J. Algebra 176 (1995), 128-138. Zbl 0841.17004, MR 1345298 |
Reference:
|
[27] Ungar A.A.: The relativistic noncommutative nonassociative group of velocities and the Thomas rotation.Results Math. 16 (1989), 168-179. Zbl 0693.20067, MR 1020224 |
Reference:
|
[28] Ungar A.A.: Weakly associative groups.Results Math. 17 (1990), 149-168. Zbl 0699.20055, MR 1039282 |
Reference:
|
[29] Ungar A.A.: Thomas precession and its associated grouplike structure.Amer. J. Phys. 59 (1991), 824-834. MR 1126776 |
Reference:
|
[30] Ungar A.A.: The holomorphic automorphism group of the complex disk.Aequationes Math. 47 (1994), 240-254. Zbl 0799.20032, MR 1268034 |
Reference:
|
[31] Ungar A.A.: Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics.Found. Phys. 27 (1997), 881-951. MR 1477047 |
. |