Previous |  Up |  Next

Article

Title: Racks and orbits of dressing transformations (English)
Author: Balinsky, A. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 437-444
.
Category: math
.
Summary: A new algebraic structure on the orbits of dressing transformations of the quasitriangular Poisson Lie groups is provided. This gives the topological interpretation of the link invariants associated with the Weinstein-Xu classical solutions of the quantum Yang-Baxter equation. Some applications to the three-dimensional topological quantum field theories are discussed. (English)
Keyword: automorphic set
Keyword: Poisson Lie group
Keyword: link invariants
MSC: 17B63
MSC: 57M25
MSC: 57M27
MSC: 57R56
MSC: 81R50
idZBL: Zbl 1037.57500
idMR: MR1795074
.
Date available: 2009-01-08T19:03:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119178
.
Reference: [1] Atiyah M.: Topological quantum field theories.I.H.E.S. 68 (1988), 175-186. Zbl 0692.53053, MR 1001453
Reference: [2] Witten E.: Quantum field theories and the Jones polynomial.Comm. Math. Phys. 121 351-399 (1989). MR 0990772
Reference: [3] Masbaum G., Rourke C.: Model categories and topological quantum field theories.Turkish J. Math. 18 (1994). Zbl 0864.57032, MR 1270440
Reference: [4] Fenn R., Rourke C.: Racks and links in codimension two.J. Knot Theory Ramifications 1 4 343-406 (1992). Zbl 0787.57003, MR 1194995
Reference: [5] Joyce D.: A classifying invariant of knots, the knot quandle.J. Pure Appl. Algebra 23 37-65 (1982). Zbl 0474.57003, MR 0638121
Reference: [6] Brieskorn E.: Automorphic sets and braids and singularities.in ``Braids'', Ed. J. Birman and A. Libgober, Contemp. Math. 78 (1998), 45-115. Zbl 0716.20017, MR 0975077
Reference: [7] Weinstein A., Xu P.: Classical solution of the quantum Yang-Baxter equation.Comm. Math. Phys. 148 309-343 (1992). MR 1178147
Reference: [8] Yetter D.N.: Topological quantum field theories associated to finite groups and crossed $G$-set.J. Knot Theory Ramifications 1 1 1-20 (1992). MR 1155090
Reference: [9] Balinsky A.: Braid Groups.in ``Oper. Theor. in Funct. Spaces'', ed. E. Gordon and M. Antonetz, Gorki State Univ., 1991 (in Russian).
Reference: [10] Balinsky A.: Weinstein-Xu invariants and link group representations I.e-preprint hep-th/9404168.
Reference: [11] Birman J.S.: New points of view in knot theory.Bull. Amer. Math. Soc. 28 253-287 (1993). Zbl 0785.57001, MR 1191478
Reference: [12] Jones V.F.R.: A polynomial invariant for knots via von Neumann algebras.Bull. Amer. Math. Soc. 12 103-111 (1985). Zbl 0564.57006, MR 0766964
Reference: [13] Drinfeld V.G.: On some unsolved problems in quantum group theory.Lecture Notes in Math. 1510, 1992, pp.1-8. Zbl 0765.17014, MR 1183474
Reference: [14] Freyd P.J., Yetter D.N.: Braided compact closed categories with applications to low-dimensional topology.Adv. in Math. 77 (2) 156-182 (1989). Zbl 0679.57003, MR 1020583
Reference: [15] Drinfeld V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and geometrical meaning of classical Yang-Baxter equations.Dokl. Akad. Nauk SSSR 2 285-287 (1982). MR 0688240
Reference: [16] Reshetikhin N., Semenov-Tian-Shansky M.: Quantum R-matrices and factorization problems.J. Diff. Geom. 31 533-550 (1988). Zbl 0711.17008, MR 1075721
Reference: [17] Semenov-Tian-Shansky M.A.: Dressing transformations and Poisson Lie group actions.Publ. RIMS, Kyoto University 21 1237-1260 (1985). MR 0842417
Reference: [18] Weinstein A.: Some remarks on dressing transformations.J. Fac. Sci. Univ. Tokyo, Sect. A, Math. 36 163-167 (1988). Zbl 0653.58012, MR 0931446
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_1.pdf 211.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo