Previous |  Up |  Next

Article

Title: Bounds for the spectral radius of positive operators (English)
Author: Drnovšek, Roman
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 459-467
.
Category: math
.
Summary: Let $f$ be a non-zero positive vector of a Banach lattice $L$, and let $T$ be a positive linear operator on $L$ with the spectral radius $r(T)$. We find some groups of assumptions on $L$, $T$ and $f$ under which the inequalities $$ \sup \{c \geq 0 : T f \geq c \, f\} \leq r(T) \leq \inf \{c \geq 0 : T f \leq c \, f\} $$ hold. An application of our results gives simple upper and lower bounds for the spectral radius of a product of positive operators in terms of positive eigenvectors corresponding to the spectral radii of given operators. We thus extend the matrix result obtained by Johnson and Bru which was the motivation for this paper. (English)
Keyword: Banach lattices
Keyword: positive operators
Keyword: spectral radius
MSC: 46B42
MSC: 47A10
MSC: 47B65
idZBL: Zbl 1040.46021
idMR: MR1795077
.
Date available: 2009-01-08T19:03:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119181
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372
Reference: [2] Förster K.-H., Nagy B.: On the Collatz-Wielandt numbers and the local spectral radius of a nonnegative operator.Linear Algebra Appl. 120 193-205 (1989). MR 1010057
Reference: [3] Förster K.-H., Nagy B.: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 155-166 (1991). MR 1124954
Reference: [4] Grobler J.J.: A note on the theorems of Jentzsch-Perron and Frobenius.Indagationes Math. 49 381-391 (1987). Zbl 0634.47034, MR 0922442
Reference: [5] Johnson C.R., Bru R.: The spectral radius of a product of nonnegative matrices.Linear Algebra Appl. 141 227-240 (1990). Zbl 0712.15013, MR 1076115
Reference: [6] Marek I., Varga R.S.: Nested bounds for the spectral radius.Numer. Math. 14 49-70 (1969). Zbl 0221.65063, MR 0257779
Reference: [7] Marek I.: Frobenius theory of positive operators: Comparison theorems and applications.SIAM J. Appl. Math. 19 607-628 (1970). Zbl 0219.47022, MR 0415405
Reference: [8] Marek I.: Collatz-Wielandt numbers in general partially ordered spaces.Linear Algebra Appl. 173 165-180 (1992). Zbl 0777.47003, MR 1170509
Reference: [9] Schaefer H.H.: Banach lattices and positive operators.(Grundlehren Math. Wiss. Bd. 215), Springer-Verlag, New York, 1974. Zbl 0296.47023, MR 0423039
Reference: [10] Schaefer H.H.: A minimax theorem for irreducible compact operators in $L^p$-spaces.Israel J. Math. 48 196-204 (1984). MR 0770701
Reference: [11] Wielandt H.: Unzerlegbare, nicht-negative Matrizen,.Math. Z. 52 642-648 (1950). Zbl 0035.29101, MR 0035265
Reference: [12] Zaanen A.C.: Riesz Spaces II.North Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_4.pdf 213.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo