Title:
|
Covering dimension and differential inclusions (English) |
Author:
|
Anello, G. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
477-484 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we shall establish a result concerning the covering dimension of a set of the type $\{x\in X:\Phi (x)\cap \Psi (x)\neq \emptyset \}$, where $\Phi $, $\Psi $ are two multifunctions from $X$ into $Y$ and $X$, $Y$ are real Banach spaces. Moreover, some applications to the differential inclusions will be given. (English) |
Keyword:
|
multifunction |
Keyword:
|
Hausdorff distance |
Keyword:
|
convex processes |
Keyword:
|
covering dimension |
Keyword:
|
differential inclusion |
MSC:
|
26E25 |
MSC:
|
34A60 |
MSC:
|
34G20 |
MSC:
|
47H04 |
idZBL:
|
Zbl 1038.47501 |
idMR:
|
MR1795079 |
. |
Date available:
|
2009-01-08T19:04:14Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119183 |
. |
Reference:
|
[1] Aubin J.P., Cellina A.: Differential Inclusion.Springer Verlag, 1984. MR 0755330 |
Reference:
|
[2] Cubiotti P.: Some remarks on fixed points of lower semicontinous multifunction.J. Math. Anal. Appl. (1993), 174 407-412. MR 1215621 |
Reference:
|
[3] Dzedzej Z., Gelman B.D.: Dimension of the solution set for differential inclusions.Demonstratio Math. (1993), 26 1 149-158. Zbl 0783.34008, MR 1226553 |
Reference:
|
[4] Engelking R.: Theory of Dimensions, Finite and Infinite.Heldermann Verlag, 1995. Zbl 0872.54002, MR 1363947 |
Reference:
|
[5] Gel'man P.D.: On topological dimension of a set of solution of functional inclusions.Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, Torun, (1998), 2 163-178. |
Reference:
|
[6] Klein E., Thompson A.C.: Theory of Correspondences.John Wiley and Sons, 1984. Zbl 0556.28012, MR 0752692 |
Reference:
|
[7] Naselli Ricceri O.: Classical solutions of the problem $x'\in F(t,x,x')$, $x(t_0)=x_0$, $x'(t_0)=y_0$, in Banach spaces.Funkcial. Ekvac. (1991), 34 1 127-141. MR 1116885 |
Reference:
|
[8] Ricceri B.: Remarks on multifunctions with convex graph.Arch. Math. (1989), 52 519-520. Zbl 0648.46010, MR 0998626 |
Reference:
|
[9] Ricceri B.: On the topological dimension of the solution set of a class of nonlinear equations.C.R. Acad. Sci. Paris, Série I (1997), 325 65-70. Zbl 0884.47043, MR 1461399 |
Reference:
|
[10] Ricceri B.: Covering dimension and nonlinear equations.RIMS, Kyoto, Surikai sekikenkyusho-Kokyuroku (1998), 1031 97-100. Zbl 0940.47049, MR 1662663 |
. |