Previous |  Up |  Next

Article

Title: Covering dimension and differential inclusions (English)
Author: Anello, G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 477-484
.
Category: math
.
Summary: In this paper we shall establish a result concerning the covering dimension of a set of the type $\{x\in X:\Phi (x)\cap \Psi (x)\neq \emptyset \}$, where $\Phi $, $\Psi $ are two multifunctions from $X$ into $Y$ and $X$, $Y$ are real Banach spaces. Moreover, some applications to the differential inclusions will be given. (English)
Keyword: multifunction
Keyword: Hausdorff distance
Keyword: convex processes
Keyword: covering dimension
Keyword: differential inclusion
MSC: 26E25
MSC: 34A60
MSC: 34G20
MSC: 47H04
idZBL: Zbl 1038.47501
idMR: MR1795079
.
Date available: 2009-01-08T19:04:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119183
.
Reference: [1] Aubin J.P., Cellina A.: Differential Inclusion.Springer Verlag, 1984. MR 0755330
Reference: [2] Cubiotti P.: Some remarks on fixed points of lower semicontinous multifunction.J. Math. Anal. Appl. (1993), 174 407-412. MR 1215621
Reference: [3] Dzedzej Z., Gelman B.D.: Dimension of the solution set for differential inclusions.Demonstratio Math. (1993), 26 1 149-158. Zbl 0783.34008, MR 1226553
Reference: [4] Engelking R.: Theory of Dimensions, Finite and Infinite.Heldermann Verlag, 1995. Zbl 0872.54002, MR 1363947
Reference: [5] Gel'man P.D.: On topological dimension of a set of solution of functional inclusions.Differential Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, Torun, (1998), 2 163-178.
Reference: [6] Klein E., Thompson A.C.: Theory of Correspondences.John Wiley and Sons, 1984. Zbl 0556.28012, MR 0752692
Reference: [7] Naselli Ricceri O.: Classical solutions of the problem $x'\in F(t,x,x')$, $x(t_0)=x_0$, $x'(t_0)=y_0$, in Banach spaces.Funkcial. Ekvac. (1991), 34 1 127-141. MR 1116885
Reference: [8] Ricceri B.: Remarks on multifunctions with convex graph.Arch. Math. (1989), 52 519-520. Zbl 0648.46010, MR 0998626
Reference: [9] Ricceri B.: On the topological dimension of the solution set of a class of nonlinear equations.C.R. Acad. Sci. Paris, Série I (1997), 325 65-70. Zbl 0884.47043, MR 1461399
Reference: [10] Ricceri B.: Covering dimension and nonlinear equations.RIMS, Kyoto, Surikai sekikenkyusho-Kokyuroku (1998), 1031 97-100. Zbl 0940.47049, MR 1662663
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_6.pdf 202.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo