Title:
|
The Banach contraction mapping principle and cohomology (English) |
Author:
|
Janoš, Ludvík |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
605-610 |
. |
Category:
|
math |
. |
Summary:
|
By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary. (English) |
Keyword:
|
$B$-system |
Keyword:
|
$E$-system |
MSC:
|
37B25 |
MSC:
|
37B99 |
MSC:
|
47H10 |
MSC:
|
54H15 |
MSC:
|
54H20 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1087.37502 |
idMR:
|
MR1795089 |
. |
Date available:
|
2009-01-08T19:05:33Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119193 |
. |
Reference:
|
[1] Edelstein M.: On fixed and periodic points under contractive mappings.J. London Math. Soc. 37 (1962), 74-79. Zbl 0113.16503, MR 0133102 |
Reference:
|
[2] Huissi M.: Sur les solutions globales de l'equation des cocycles.Aequationes Math. 45 (1993), 195-206. MR 1212385 |
Reference:
|
[3] Iwanik A.: Ergodicity for piecewise smooth cocycles over toral rotations.Fund. Math. 157 (1998), 235-244. MR 1636890 |
Reference:
|
[4] Janoš L.: A converse of Banach's contraction theorem.Proc. Amer. Math. Soc. 18 (1967), 287-289. Zbl 0148.43001, MR 0208589 |
Reference:
|
[5] Janoš L., Ko H.M., Tau K.K.: Edelstein's contractivity and attractors.Proc. Amer. Math. Soc. 76 (1979), 339-344. MR 0537101 |
Reference:
|
[6] Meyers P.R.: A converse to Banach's contraction theorem.J. Res. Nat. Bureau of Standard 71B (1967), 73-76. Zbl 0161.19803, MR 0221469 |
Reference:
|
[7] Moore C., Schmidt K.: Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson.Proc. London Math. Soc. 40 (1980), 443-475. MR 0572015 |
Reference:
|
[8] Nussbaum R.: Some asymptotic fixed point theorem.Trans. Amer. Math. Soc. 171 (1972), 349-375. MR 0310719 |
Reference:
|
[9] Opoitsev V.J.: A converse to the principle of contracting maps.Russian Math. Surveys 31 (1976), 175-204. Zbl 0351.54025 |
Reference:
|
[10] Parry W., Tuncel S.: Classification Problems in Ergodic Theory.London Math. Soc. Lecture Note Series 67, Cambridge University Press, Cambridge, 1982. Zbl 0487.28014, MR 0666871 |
Reference:
|
[11] Rus I.A.: Weakly Picard mappings.Comment. Math. Univ. Carolinae 34 (1993), 769-773. Zbl 0787.54045, MR 1263804 |
Reference:
|
[12] Volný D.: Coboundaries over irrational rotations.Studia Math. 126 (1997), 253-271. MR 1475922 |
. |