Previous |  Up |  Next

Article

Title: The Banach contraction mapping principle and cohomology (English)
Author: Janoš, Ludvík
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 605-610
.
Category: math
.
Summary: By a dynamical system $(X,T)$ we mean the action of the semigroup $(\Bbb Z^+,+)$ on a metrizable topological space $X$ induced by a continuous selfmap $T:X\rightarrow X$. Let $M(X)$ denote the set of all compatible metrics on the space $X$. Our main objective is to show that a selfmap $T$ of a compact space $X$ is a Banach contraction relative to some $d_1\in M(X)$ if and only if there exists some $d_2\in M(X)$ which, regarded as a $1$-cocycle of the system $(X,T)\times (X,T)$, is a coboundary. (English)
Keyword: $B$-system
Keyword: $E$-system
MSC: 37B25
MSC: 37B99
MSC: 47H10
MSC: 54H15
MSC: 54H20
MSC: 54H25
idZBL: Zbl 1087.37502
idMR: MR1795089
.
Date available: 2009-01-08T19:05:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119193
.
Reference: [1] Edelstein M.: On fixed and periodic points under contractive mappings.J. London Math. Soc. 37 (1962), 74-79. Zbl 0113.16503, MR 0133102
Reference: [2] Huissi M.: Sur les solutions globales de l'equation des cocycles.Aequationes Math. 45 (1993), 195-206. MR 1212385
Reference: [3] Iwanik A.: Ergodicity for piecewise smooth cocycles over toral rotations.Fund. Math. 157 (1998), 235-244. MR 1636890
Reference: [4] Janoš L.: A converse of Banach's contraction theorem.Proc. Amer. Math. Soc. 18 (1967), 287-289. Zbl 0148.43001, MR 0208589
Reference: [5] Janoš L., Ko H.M., Tau K.K.: Edelstein's contractivity and attractors.Proc. Amer. Math. Soc. 76 (1979), 339-344. MR 0537101
Reference: [6] Meyers P.R.: A converse to Banach's contraction theorem.J. Res. Nat. Bureau of Standard 71B (1967), 73-76. Zbl 0161.19803, MR 0221469
Reference: [7] Moore C., Schmidt K.: Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson.Proc. London Math. Soc. 40 (1980), 443-475. MR 0572015
Reference: [8] Nussbaum R.: Some asymptotic fixed point theorem.Trans. Amer. Math. Soc. 171 (1972), 349-375. MR 0310719
Reference: [9] Opoitsev V.J.: A converse to the principle of contracting maps.Russian Math. Surveys 31 (1976), 175-204. Zbl 0351.54025
Reference: [10] Parry W., Tuncel S.: Classification Problems in Ergodic Theory.London Math. Soc. Lecture Note Series 67, Cambridge University Press, Cambridge, 1982. Zbl 0487.28014, MR 0666871
Reference: [11] Rus I.A.: Weakly Picard mappings.Comment. Math. Univ. Carolinae 34 (1993), 769-773. Zbl 0787.54045, MR 1263804
Reference: [12] Volný D.: Coboundaries over irrational rotations.Studia Math. 126 (1997), 253-271. MR 1475922
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_16.pdf 186.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo