Previous |  Up |  Next

Article

Title: Homomorphism duality for rooted oriented paths (English)
Author: Smolíková, Petra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 3
Year: 2000
Pages: 631-643
.
Category: math
.
Summary: Let $(H,r)$ be a fixed rooted digraph. The $(H,r)$-coloring problem is the problem of deciding for which rooted digraphs $(G,s)$ there is a homomorphism $f:G\to H$ which maps the vertex $s$ to the vertex $r$. Let $(H,r)$ be a rooted oriented path. In this case we characterize the nonexistence of such a homomorphism by the existence of a rooted oriented cycle $(C,q)$, which is homomorphic to $(G,s)$ but not homomorphic to $(H,r)$. Such a property of the digraph $(H,r)$ is called {\it rooted cycle duality } or $*$-{\it cycle duality}. This extends the analogical result for unrooted oriented paths given in [6]. We also introduce the notion of {\it comprimed tree duality}. We show that comprimed tree duality of a rooted digraph $(H,r)$ implies a polynomial algorithm for the $(H,r)$-coloring problem. (English)
Keyword: graph homomorphism
Keyword: homomorphism duality
Keyword: rooted oriented path
MSC: 05C20
MSC: 05C38
MSC: 05C85
MSC: 05C99
idZBL: Zbl 1033.05051
idMR: MR1795092
.
Date available: 2009-01-08T19:05:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119196
.
Reference: [1] Gutjahr W., Welzl E., Woeginger G.: Polynomial graph colourings.Discrete Appl. Math. 35 (1992), 29-46. MR 1138082
Reference: [2] Hell P., Nešetřil J.: On the complexity of $H$-colouring.J. Combin. Theory B 48 (1990), 92-110. MR 1047555
Reference: [3] Hell P., Nešetřil J., Zhu X.: Duality and polynomial testing of tree homomorphisms.Trans. Amer. Math. Soc. 348.4 (1996), 1281-1297. MR 1333391
Reference: [4] Hell P., Nešetřil J., Zhu X.: Duality of graph homomorphisms.Combinatorics, Paul Erdös is Eighty, Vol. 2, Bolyai Society Mathematical Studies, Budapest, 1994, pp.271-282. MR 1395863
Reference: [5] Hell P., Zhou H., Zhu X.: Homomorphisms to oriented cycles.Combinatorica 13 (1993), 421-433. Zbl 0794.05037, MR 1262918
Reference: [6] Hell P., Zhu X.: Homomorphisms to oriented paths.Discrete Math. 132 (1994), 107-114. Zbl 0819.05030, MR 1297376
Reference: [7] Hell P., Zhu X.: The existence of homomorphisms to oriented cycles.SIAM J. Discrete Math. 8 (1995), 208-222. Zbl 0831.05059, MR 1329507
Reference: [8] Nešetřil J., Zhu X.: On bounded tree width duality of graphs.J. Graph Theory 23.2 (1996), 151-162. MR 1408343
Reference: [9] Špičková-Smolíková P.: Homomorfismové duality orientovaných grafů (in Czech).Diploma Thesis, Charles University, 1997.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-3_19.pdf 241.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo