Previous |  Up |  Next

Article

Title: Polyabelian loops and Boolean completeness (English)
Author: Lemieux, François
Author: Moore, Cristopher
Author: Thérien, Denis
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 671-686
.
Category: math
.
Summary: We consider the question of which loops are capable of expressing arbitrary Boolean functions through expressions of constants and variables. We call this property {\it Boolean completeness\/}. It is a generalization of functional completeness, and is intimately connected to the computational complexity of various questions about expressions, circuits, and equations defined over the loop. We say that a loop is {\it polyabelian\/} if it is an iterated affine quasidirect product of Abelian groups; polyabelianness coincides with solvability for groups, and lies properly between nilpotence and solvability for loops. Our main result is that a loop is Boolean-complete if and only if it is not polyabelian. Since groups are Boolean-complete if and only if they are not solvable, this shows that polyabelianness, for these purposes, is the appropriate generalization of solvability to loops. (English)
Keyword: loops
Keyword: quasigroups
Keyword: functional closure
Keyword: solvability
Keyword: quasidirect products
Keyword: computational complexity
MSC: 03G05
MSC: 06E30
MSC: 17A01
MSC: 17X08
MSC: 20N05
MSC: 68Q15
MSC: 68W30
MSC: 94C10
idZBL: Zbl 1051.20033
idMR: MR1800174
.
Date available: 2009-01-08T19:06:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119201
.
Reference: [1] Albert A.A.: Quasigroups I.Trans. Amer. Math. Soc. 54 (1943), 507-519 and {Quasigroup II}, Trans. Amer. Math. Soc. 55 (1944), 401-419. Zbl 0063.00039, MR 0009962
Reference: [2] Barrington D.A., Straubing H., Thérien D.: Non-uniform automata over groups.Information and Computation 89 (1990), 109-132. MR 1080845
Reference: [3] Barrington D., Thérien D.: Finite monoids and the fine structure of $NC^1$.Journal of the ACM 35 (1988), 941-952. MR 1072406
Reference: [4] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc 60 (1946), 245-354. Zbl 0061.02201, MR 0017288
Reference: [5] Bruck R.H.: A Survey of Binary Systems.Springer-Verlag, 1966. Zbl 0141.01401, MR 0093552
Reference: [6] Caussinus H., Lemieux F.: The complexity of computing over quasigroups.in Proc. 14th annual FST&TCS, 1994, pp.36-47. Zbl 1044.68679, MR 1318016
Reference: [7] Chein O., Pflugfelder H.O., Smith J.D.H. (eds.): Quasigroups and Loops: Theory and Applications.Heldermann Verlag, 1990. Zbl 0719.20036, MR 1125806
Reference: [8] Dénes J., Keedwell A.D.: Latin Squares and their Applications.English University Press, 1974. MR 0351850
Reference: [9] Goldmann M., Russell A.: Proc. 14th Annual IEEE Conference on Computational Complexity, 1999..
Reference: [10] Hall P.: The Theory of Groups.Macmillan, 1959. Zbl 0919.20001, MR 0103215
Reference: [11] Lemieux F.: Finite Groupoids and their Applications to Computational Complexity.Ph.D. Thesis, School of Computer Science, McGill University, Montréal, 1996.
Reference: [12] Maurer W.D., Rhodes J.: A property of finite simple non-Abelian groups.Proc. Amer. Math. Soc. 16 (1965), 552-554. Zbl 0132.26903, MR 0175971
Reference: [13] McKenzie R.: On minimal, locally finite varieties with permuting congruence relations.preprint, 1976.
Reference: [14] Moore C.: Predicting non-linear cellular automata quickly by decomposing them into linear ones.Physica D 111 (1998), 27-41. MR 1601494
Reference: [15] Moore C., Thérien D., Lemieux F., Berman J., Drisko A.: Circuits and expressions with non-associative gates.to appear in J. Comput. System Sci.
Reference: [16] Papadimitriou C.H.: Computational Complexity.Addison-Wesley, 1994. Zbl 0833.68049, MR 1251285
Reference: [17] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, 1990. Zbl 0715.20043, MR 1125767
Reference: [18] Straubing H.: Families of recognizable sets corresponding to certain families of finite monoids.J. Pure Appl. Algebra 15 (1979), 305-318. MR 0537503
Reference: [19] Straubing H.: Representing functions by words over finite semigroups.Université de Montréal, Technical Report #838, 1992.
Reference: [20] Suzuki M.: Group Theory I..Springer-Verlag, 1982. Zbl 0472.20001, MR 0648772
Reference: [21] Thérien D.: Classification of finite monoids: the language approach.Theor. Comp. Sci. 14 (1981), 195-208. MR 0614416
Reference: [22] Szendrei A.: Clones in Universal Algebra.Les Presses de L'Université de Montréal, 1986. Zbl 0603.08004, MR 0859550
Reference: [23] Vesanen A.: Solvable groups and loops.J. Algebra 180 (1996), 862-876. Zbl 0853.20050, MR 1379214
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_3.pdf 273.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo