Previous |  Up |  Next

Article

Title: On abelian inner mapping groups of finite loops (English)
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 687-691
.
Category: math
.
Summary: In this paper we consider finite loops of specific order and we show that certain abelian groups are not isomorphic to inner mapping groups of these loops. By using our results we are able to construct a finite solvable group of order 120 which is not isomorphic to the multiplication group of a finite loop. (English)
Keyword: loop
Keyword: group
Keyword: connected transversals
MSC: 20D10
MSC: 20N05
idZBL: Zbl 1051.20034
idMR: MR1800173
.
Date available: 2009-01-08T19:06:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119202
.
Reference: [1] Denes J., Keedwell A.D.: Latin squares and their applications.Akademiai Kiado, Budapest, 1974. Zbl 0283.05014, MR 0351850
Reference: [2] Drápal A., Kepka T.: Alternating groups and latin squares.European J. Combin. 10 (1989), 175-180. MR 0988511
Reference: [3] Kepka T., Niemenmaa M.: On loops with cyclic inner mapping groups.Arch. Math. 60 (1993), 233-236. MR 1201636
Reference: [4] Liebeck M.: The classification of the finite simple Moufang loops.Math. Proc. Camb. Phil. Soc. 102 (1987), 33-47. MR 0886433
Reference: [5] Niemenmaa M.: On the structure of the inner mapping groups of loops.Comm. Algebra 24 (1996), 135-142. Zbl 0853.20049, MR 1370527
Reference: [6] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112-122. Zbl 0706.20046, MR 1076080
Reference: [7] Niemenmaa M., Kepka T.: On connected transversals to abelian subgroups.Bull. Austral. Math. Soc. 49 (1994), 121-128. Zbl 0799.20020, MR 1262682
Reference: [8] Rotman J.: An introduction to the theory of groups.Springer-Verlag, 1995. Zbl 0810.20001, MR 1307623
Reference: [9] Vesanen A.: On connected transversals in $PSL(2,q)$.Ann. Acad. Sci. Fenn., Series A, I. Mathematica, Dissertationes 84, 1992. Zbl 0744.20058, MR 2714539
Reference: [10] Vesanen A.: The group $PSL(2,q)$ is not the multiplication group of a loop.Comm. Algebra 22 (1994), 1177-1195. MR 1261254
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_4.pdf 178.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo