Previous |  Up |  Next

Article

Title: Projections from $L(X,Y)$ onto $K(X,Y)$ (English)
Author: John, Kamil
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 4
Year: 2000
Pages: 765-771
.
Category: math
.
Summary: Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let $X$ and $Y$ be Banach spaces such that $X$ is weakly compactly generated Asplund space and $X^*$ has the approximation property (respectively $Y$ is weakly compactly generated Asplund space and $Y^*$ has the approximation property). Suppose that $L(X,Y)\neq K(X,Y)$ and let $1<\lambda<2$. Then $X$ (respectively $Y$) can be equivalently renormed so that any projection $P$ of $L(X,Y)$ onto $K(X,Y)$ has the sup-norm greater or equal to $\lambda $. (English)
Keyword: compact operator
Keyword: approximation property
Keyword: reflexive Banach space
Keyword: projection
Keyword: separability
MSC: 46B28
idZBL: Zbl 1050.46016
idMR: MR1800167
.
Date available: 2009-01-08T19:07:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119208
.
Reference: Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), 35-59. Zbl 0164.14903, MR 0228983
Reference: Arterburn D., Whitney R.: Projections in the space of bounded linear operators.Pacific J. Math. 15 (1965), 739-746. MR 0187052
Reference: Casazza P.G., Kalton N.J.: Notes on approximation properties on separable Banach spaces.in: Geometry of Banach spaces, London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, pp.49-63. MR 1110185
Reference: Diestel J., Morrison T.J.: The Radon-Nikodym property for the space of operators.Math. Nachr. 92 (1979), 7-12. Zbl 0444.46021, MR 0563569
Reference: Emmanuele G.: On the containment of $c_0$ by spaces of compact operators.Bull. Sci. Mat. 115 (1991), 177-184. MR 1101022
Reference: Emmanuele G.: A remark on the containment of $c_0$ in spaces of compact operators.Math. Proc. Cambridge Phil. Soc. 111 (1992), 331-335. MR 1142753
Reference: Emmanuele G., John K.: Uncomplementability of spaces of compact operators in lager spaces of operators.Czechoslovak J. Math. 47 (122) (1997), 19-32. MR 1435603
Reference: Feder M.: On subspaces of spaces with an unconditional basis and spaces of operators.Illinois J. Math. 24 (1980), 196-205. Zbl 0411.46009, MR 0575060
Reference: Feder M.: On the non-existence of a projection onto the spaces of compact operators.Canad. Math. Bull. 25 (1982), 78-81. MR 0657655
Reference: Godefroy G., Saphar P.: Duality in spaces of operators and smooth norms on Banach spaces.Illinois J. Math. 32 (4) (1988), 672-695. Zbl 0631.46015, MR 0955384
Reference: Godun B.V.: Unconditional bases and basic sequences.Izv. Vyssh. Uchebn. Zaved. Mat 24 (1980), 69-72. MR 0603941
Reference: John K.: On the space $K(P,P^\ast)$ of compact operators on Pisier space P.Note di Matematica 72 (1992), 69-75. MR 1258564
Reference: John K.: On the uncomplemented subspace ${\Cal K}(X,Y)$.Czechoslovak Math. J. 42 (1992), 167-173. MR 1152178
Reference: Johnson J.: Remarks on Banach spaces of compact operators.J. Funct. Analysis 32 (1979), 304-311. Zbl 0412.47024, MR 0538857
Reference: Kuo T.H.: Projections in the space of bounded linear operators.Pacific. J. Math. 52 (1974), 475-480. MR 0352939
Reference: Kalton N.J.: Spaces of compact operators.Math. Ann. 208 (1974), 267-278. Zbl 0266.47038, MR 0341154
Reference: Lindenstrauss J.: On nonseparable reflexive Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 967-970. Zbl 0156.36403, MR 0205040
Reference: Ruess W.: Duality and geometry of spaces of compact operators.in Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984. Zbl 0573.46007, MR 0761373
Reference: Saphar P.D.: Projections from $L(E,F)$ onto $K(E,F)$.Proc. Amer. Math. Soc. 127 (4) (1999), 1127-1131. Zbl 0912.46011, MR 1473679
Reference: Singer I.: Bases in Banach spaces. Vol. II.Berlin-Heidelberg-New York, Springer, 1981. MR 0610799
Reference: Thorp E.: Projections onto the space of compact operators.Pacific J. Math. 10 (1960), 693-696. MR 0114128
Reference: Tong A.E.: On the existence of non-compact bounded linear operators between certain Banach spaces.Israel J. Math. 10 (1971), 451-456. MR 0296663
Reference: Tong A.E., Wilken D.R.: The uncomplemented subspace $K(E,F)$.Studia Math. 37 (1971), 227-236. Zbl 0212.46302, MR 0300058
Reference: Zippin M.: Banach spaces with separable duals.Trans. Amer. Math. Soc. 310 (1988), 371-379. Zbl 0706.46015, MR 0965758
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-4_10.pdf 207.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo