Title:
|
On interval homogeneous orthomodular lattices (English) |
Author:
|
de Simone, A. |
Author:
|
Navara, M. |
Author:
|
Pták, P. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
1 |
Year:
|
2001 |
Pages:
|
23-30 |
. |
Category:
|
math |
. |
Summary:
|
An orthomodular lattice $L$ is said to be interval homogeneous (resp. centrally interval homogeneous) if it is $\sigma$-complete and satisfies the following property: Whenever $L$ is isomorphic to an interval, $[a,b]$, in $L$ then $L$ is isomorphic to each interval $[c,d]$ with $c\leq a$ and $d\geq b$ (resp. the same condition as above only under the assumption that all elements $a$, $b$, $c$, $d$ are central in $L$). Let us denote by Inthom (resp. Inthom$_c$) the class of all interval homogeneous orthomodular lattices (resp. centrally interval homogeneous orthomodular lattices). We first show that the class Inthom is considerably large — it contains any Boolean $\sigma$-algebra, any block-finite $\sigma$-complete orthomodular lattice, any Hilbert space projection lattice and several other examples. Then we prove that $L$ belongs to Inthom exactly when the Cantor-Bernstein-Tarski theorem holds in $L$. This makes it desirable to know whether there exist $\sigma$-complete orthomodular lattices which do not belong to Inthom. Such examples indeed exist as we than establish. At the end we consider the class Inthom$_c$. We find that each $\sigma$-complete orthomodular lattice belongs to Inthom$_c$, establishing an orthomodular version of Cantor-Bernstein-Tarski theorem. With the help of this result, we settle the Tarski cube problem for the $\sigma$-complete orthomodular lattices. (English) |
Keyword:
|
interval in a $\sigma$-complete orthomodular lattice |
Keyword:
|
center |
Keyword:
|
Boolean $\sigma$-algebra |
Keyword:
|
Cantor-Bernstein-Tarski theorem |
MSC:
|
06C15 |
MSC:
|
06E05 |
MSC:
|
81P10 |
idZBL:
|
Zbl 1077.06005 |
idMR:
|
MR1825370 |
. |
Date available:
|
2009-01-08T19:08:14Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119221 |
. |
Reference:
|
[1] Beran L.: Orthomodular Lattices. Algebraic Approach.Academia, Praha and D. Reidel, Dordrecht, 1984. Zbl 0558.06008, MR 0785005 |
Reference:
|
[2] Bruns G., Greechie R.: Orthomodular lattices which can be covered by finitely many blocks.Canadian J. Math. 34 (1982), 696-699. Zbl 0493.06008, MR 0663312 |
Reference:
|
[3] Halmos P.R.: Lectures on Boolean Algebras.Van Nostrand, Princeton, 1963. Zbl 0285.06010, MR 0167440 |
Reference:
|
[4] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496 |
Reference:
|
[5] Ketonen J.: The structure of countable Boolean algebras.Ann. Math. 108 (1978), 41-89. Zbl 0418.06006, MR 0491391 |
Reference:
|
[6] Monk J.D., Bonnet R.: Handbook of Boolean Algebras I..North Holland Elsevier Science Publisher B.V., 1989. |
Reference:
|
[7] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361-369. MR 0968618 |
Reference:
|
[8] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer, DordrechtBoston-London, 1991. MR 1176314 |
Reference:
|
[9] Sikorski R.: Boolean Algebras.3rd ed., Springer Verlag, Berlin/Heidelberg/New York, 1969. Zbl 0191.31505, MR 0242724 |
. |