Previous |  Up |  Next

Article

Title: On interval homogeneous orthomodular lattices (English)
Author: de Simone, A.
Author: Navara, M.
Author: Pták, P.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 23-30
.
Category: math
.
Summary: An orthomodular lattice $L$ is said to be interval homogeneous (resp. centrally interval homogeneous) if it is $\sigma$-complete and satisfies the following property: Whenever $L$ is isomorphic to an interval, $[a,b]$, in $L$ then $L$ is isomorphic to each interval $[c,d]$ with $c\leq a$ and $d\geq b$ (resp. the same condition as above only under the assumption that all elements $a$, $b$, $c$, $d$ are central in $L$). Let us denote by Inthom (resp. Inthom$_c$) the class of all interval homogeneous orthomodular lattices (resp. centrally interval homogeneous orthomodular lattices). We first show that the class Inthom is considerably large — it contains any Boolean $\sigma$-algebra, any block-finite $\sigma$-complete orthomodular lattice, any Hilbert space projection lattice and several other examples. Then we prove that $L$ belongs to Inthom exactly when the Cantor-Bernstein-Tarski theorem holds in $L$. This makes it desirable to know whether there exist $\sigma$-complete orthomodular lattices which do not belong to Inthom. Such examples indeed exist as we than establish. At the end we consider the class Inthom$_c$. We find that each $\sigma$-complete orthomodular lattice belongs to Inthom$_c$, establishing an orthomodular version of Cantor-Bernstein-Tarski theorem. With the help of this result, we settle the Tarski cube problem for the $\sigma$-complete orthomodular lattices. (English)
Keyword: interval in a $\sigma$-complete orthomodular lattice
Keyword: center
Keyword: Boolean $\sigma$-algebra
Keyword: Cantor-Bernstein-Tarski theorem
MSC: 06C15
MSC: 06E05
MSC: 81P10
idZBL: Zbl 1077.06005
idMR: MR1825370
.
Date available: 2009-01-08T19:08:14Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119221
.
Reference: [1] Beran L.: Orthomodular Lattices. Algebraic Approach.Academia, Praha and D. Reidel, Dordrecht, 1984. Zbl 0558.06008, MR 0785005
Reference: [2] Bruns G., Greechie R.: Orthomodular lattices which can be covered by finitely many blocks.Canadian J. Math. 34 (1982), 696-699. Zbl 0493.06008, MR 0663312
Reference: [3] Halmos P.R.: Lectures on Boolean Algebras.Van Nostrand, Princeton, 1963. Zbl 0285.06010, MR 0167440
Reference: [4] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [5] Ketonen J.: The structure of countable Boolean algebras.Ann. Math. 108 (1978), 41-89. Zbl 0418.06006, MR 0491391
Reference: [6] Monk J.D., Bonnet R.: Handbook of Boolean Algebras I..North Holland Elsevier Science Publisher B.V., 1989.
Reference: [7] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361-369. MR 0968618
Reference: [8] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer, DordrechtBoston-London, 1991. MR 1176314
Reference: [9] Sikorski R.: Boolean Algebras.3rd ed., Springer Verlag, Berlin/Heidelberg/New York, 1969. Zbl 0191.31505, MR 0242724
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_2.pdf 204.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo