Previous |  Up |  Next

Article

Title: Construction of BGG sequences for AHS structures (English)
Author: Krump, Lukáš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 31-52
.
Category: math
.
Summary: This paper gives a description of a method of direct construction of the BGG sequences of invariant operators on manifolds with AHS structures on the base of representation theoretical data of the Lie algebra defining the AHS structure. Several examples of the method are shown. (English)
Keyword: Hermitian symmetric spaces
Keyword: standard operators
Keyword: BGG sequence
Keyword: Hasse diagram
Keyword: weight graph
MSC: 17B10
MSC: 22E46
MSC: 43A85
MSC: 53A55
MSC: 53C30
idZBL: Zbl 1054.53071
idMR: MR1825371
.
Date available: 2009-01-08T19:08:18Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119222
.
Reference: [1] Baston R.J.: Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants.Duke Math. J. 63 (1991), 81-111, 113-138. MR 1106939
Reference: [2] Baston R.J., Eastwood M.G.: Penrose Transform; Its Interaction with Representation Theory.Clarendon Press, Oxford, 1989. Zbl 0726.58004, MR 1038279
Reference: [3] Bernstein I.N., Gelfand I.M., Gelfand S.I.: Structure of representations generated vectors of highest weight.Funct. Anal. Appl. 5 (1971), 1-8. MR 0291204
Reference: [4] Bernstein I.N., Gelfand I.M., Gelfand S.I.: Differential operators on the base affine space and a study of $\frak g$-modules.in ``Lie Groups and their Representations'' (ed. I.M. Gelfand) Adam Hilger, 1975, pp.21-64. MR 0578996
Reference: [5] Branson T., Ólafsson G., Ørsted B.: Spectrum generating operators and intertwining operators for representations induced from a maximal parabolic subgroup.J. Funct. Anal. 135 (1996), 163-205. MR 1367629
Reference: [6] Bureš J.: Special invariant operators I.Comment. Math. Univ. Carolinae 37.1 (1996), 179-198. MR 1396170
Reference: [7] Čap A.: Translation of natural operators on manifolds with AHS-structures.Archivum Math. (Brno) 32.4 (1996), 249-266, electronically available at www.emis.de. MR 1441397
Reference: [8] Čap A., Schichl H.: Parabolic Geometries and Canonical Cartan Connections.preprint ESI 450, electronically available at www.esi.ac.at. MR 1795487
Reference: [9] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with almost Hermitian symmetric structures, I. Invariant differentiation.Acta Math. Univ. Commenianae 66 (1997), 33-69, electronically available at www.emis.de. MR 1474550
Reference: [10] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with almost Hermitian symmetric structures, II. Normal Cartan connections, Acta Math. Univ. Commenianae.66 (1997), 203-220, electronically available at www.emis.de. MR 1620484
Reference: [11] Čap, A., Slovák J., Souček V.: Invariant operators on manifolds with almost Hermitian symmetric structures, III. Standard Operators.ESI Preprint 613, to appear in J. Differential Geom. Appl., electronically available at www.esi.ac.at. Zbl 0969.53004, MR 1757020
Reference: [12] Eastwood M.G.: On the weights of conformally invariant operators.Twistor Newsl. 24 (1987), 20-23.
Reference: [13] Eastwood M.G., Slovák J.: Semi-holonomic Verma modules.J. Algebra 197 (1997), 424-448. MR 1483772
Reference: [14] Fegan H.D.: Conformally invariant first order differential operators.Quart. J. Math. 27 (1976), 371-378. Zbl 0334.58016, MR 0482879
Reference: [15] Fulton W., Harris J.: Representation Theory - A First Course.Springer-Verlag (GTM), 1991. Zbl 0744.22001, MR 1153249
Reference: [16] Garland H., Lepowsky J.: Lie Algebra Homology and the Macdonald-Kac Formulae.Inv. Math. 34, Springer, 1976. MR 0414645
Reference: [17] Gindikin S.G.: Generalized conformal structures.Twistors in Mathematics and Physics, LMS Lecture Notes 156, Cambridge Univ. Press, 1990, pp.36-52. Zbl 0788.22008, MR 1089908
Reference: [18] Goncharov A.B.: Generalized conformal structures on manifolds.Selecta Math. Soviet. 6 (1987), 308-340. Zbl 0632.53038, MR 0925263
Reference: [19] Humphreys J.E.: Introduction to Lie Algebras and Representation Theory.Springer-Verlag, 1972. Zbl 0447.17002, MR 0323842
Reference: [20] Jakobsen H.P.: Conformal invariants.Publ. RIMS, Kyoto Univ. 22 (1986), 345-361. MR 0849262
Reference: [21] Jacobson N.: Lie Algebras.Interscience Tracts, No. 10, 1962. Zbl 0333.17009, MR 0143793
Reference: [22] Johnson K.D.: Decomposition of Exterior Algebras.Contemp. Math. 191, AMS, 1995. Zbl 0851.57040, MR 1365537
Reference: [23] Kobayashi S., Nagano T.: On filtered Lie algebras and geometric structures I.J. Math. Mech. 13 (1964), 875-907. Zbl 0142.19504, MR 0168704
Reference: [24] Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry.Springer, 1993. MR 1202431
Reference: [25] Lepowsky J.: A generalization of the Bernstein-Gelfand-Gelfand resolution.J. Algebra 49 (1977), 496-511. Zbl 0381.17006, MR 0476813
Reference: [26] Sharpe R.W.: Differential Geometry.Graduate Texts in Mathematics 166, Springer-Verlag, 1997. Zbl 0876.53001, MR 1453120
Reference: [27] Slovák J.: On the geometry of almost Hermitian symmetric structures.in Proceedings of the Conference Differential Geometry and Applications, 1995, Brno, Masaryk University, Brno (1996), pp.191-206, electronically available at www.emis.de. MR 1406338
Reference: [28] Slovák J.: Parabolic geometries.Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
Reference: [29] Verma D.N.: Structure of certain induced representations of complex semisimple Lie algebras.Bull. Amer. Math. Soc. 74 (1968), 160-166. Zbl 0157.07604, MR 0218417
Reference: [30] Wünsch V.: On conformally invariant differential operators.Math. Nachr. 129 (1986), 269-281. MR 0864639
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_3.pdf 289.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo