Previous |  Up |  Next

Article

Title: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable (English)
Author: Feireisl, Eduard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 83-98
.
Category: math
.
Summary: We show compactness of bounded sets of weak solutions to the isentropic compressible Navier-Stokes equations in three space dimensions under the hypothesis that the adiabatic constant $\gamma >3/2$. (English)
Keyword: compressible flow
Keyword: weak solutions
Keyword: compactness
MSC: 35B05
MSC: 35Q30
MSC: 76N10
idZBL: Zbl 1115.35096
idMR: MR1825374
.
Date available: 2009-01-08T19:08:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119225
.
Reference: [1] Bogovskii M.E.: Solution of some vector analysis problems connected with operators div and grad (in Russian).Trudy Sem. S.L. Sobolev 80(1) 5-40 (1980). MR 0631691
Reference: [2] Borchers W., Sohr H.: On the equation $rot v = g$ and $div u = f$ with zero boundary conditions.Hokkaido Math. J. 19 67-87 (1990). MR 1039466
Reference: [3] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 511-547 (1989). Zbl 0696.34049, MR 1022305
Reference: [4] Feireisl E., Matušů-Nečasová Š., Petzeltová H., Straškraba I.: On the motion of a viscous compressible flow driven by a time-periodic external flow.Arch. Rational Mech. Anal. 149 69-96 (1999). MR 1723036
Reference: [5] Feireisl E., Petzeltová H.: On compactness of solutions to the Navier-Stokes equations of compressible flow.J. Differential Equations 163(1) 57-75 (2000). MR 1755068
Reference: [6] Feireisl E., Petzeltová H.: On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow.Commun. Partial Differential Equations 25(3-4) 755-767 (2000). MR 1748351
Reference: [7] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, I..Springer-Verlag, New York, 1994.
Reference: [8] Jiang S., Zhang P.: On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations.preprint, 1999. Zbl 0980.35126, MR 1810944
Reference: [9] Lions P.-L.: Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models.Oxford Science Publication, Oxford, 1998. MR 1637634
Reference: [10] Lions P.-L.: Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limites de Dirichlet.C.R. Acad. Sci. Paris, Sér I. 328 659-662 (1999). MR 1680813
Reference: [11] Yi Z.: An $L^p$ theorem for compensated compactness.Proc. Royal Soc. Edinburgh 122A (1992), 177-189. Zbl 0848.32025, MR 1190238
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_6.pdf 250.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo