Previous |  Up |  Next

Article

Title: On Kelvin type transformation for Weinstein operator (English)
Author: Šimůnková, Martina
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 99-109
.
Category: math
.
Summary: The note develops results from [5] where an invariance under the Möbius transform mapping the upper halfplane onto itself of the Weinstein operator $W_k:=\Delta+\frac k{x_n}\frac{\partial}{\partial x_n}$ on $\Bbb R^n$ is proved. In this note there is shown that in the cases $k\neq 0$, $k\neq 2$ no other transforms of this kind exist and for case $k=2$, all such transforms are described. (English)
Keyword: harmonic morphisms
Keyword: Kelvin transform
Keyword: Weinstein operator
MSC: 31B05
MSC: 35B05
MSC: 35J15
idZBL: Zbl 1115.31002
idMR: MR1825375
.
Date available: 2009-01-08T19:08:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119226
.
Reference: [1] Kellogg O.D.: Foundation of Potential Theory.Springer-Verlag, Berlin, 1929 (reissued 1967). MR 0222317
Reference: [2] Leutwiler H.: On the Appell transformation.in: Potential Theory (ed. J. Král et al.), Plenum Press, New York, 1987, pp.215-222. Zbl 0685.35006, MR 0986298
Reference: [3] Brzezina M.: Appell type transformation for the Kolmogorov type operator.Math. Nachr. 169 (1994), 59-67. MR 1292797
Reference: [4] Brzezina M., Šimůnková M.: On the harmonic morphism for the Kolmogorov type operators.in: Potential Theory - ICPT 94, Walter de Gruyter, Berlin, 1996, pp.341-357. MR 1404718
Reference: [5] Akin Ö., Leutwiler H.: On the invariance of the solutions of the Weinstein equation under Möbius transformations.in: Classical and Modern Potential Theory and Applications (ed. K. GowriSankaran et al.), Kluwer Academic Publishers, 1994, pp.19-29. Zbl 0869.31005, MR 1321603
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_7.pdf 221.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo