Previous |  Up |  Next

Article

Title: Generalized tri-quotient maps and Čech-completeness (English)
Author: Dube, Themba
Author: Valov, Vesko
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 187-194
.
Category: math
.
Summary: For a topological space $X$ let $\Cal K (X)$ be the set of all compact subsets of $X$. The purpose of this paper is to characterize Lindelöf Čech-complete spaces $X$ by means of the sets $\Cal K (X)$. Similar characterizations also hold for Lindelöf locally compact $X$, as well as for countably $K$-determined spaces $X$. Our results extend a classical result of J. Christensen. (English)
Keyword: Čech-complete spaces
Keyword: Lindelöf spaces
Keyword: tri-quotient maps
MSC: 54C10
MSC: 54C60
idZBL: Zbl 1053.54021
idMR: MR1825382
.
Date available: 2009-01-08T19:09:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119233
.
Reference: [1] Bouziad A., Calbrix J.: Čech-complete spaces and the upper topology.Topology Appl. 70 (1996), 133-138. Zbl 0860.54002, MR 1397071
Reference: [2] Christensen J.P.R.: Topology and Borel Structure.North-Holland, Amsterdam, 1974. Zbl 0273.28001, MR 0348724
Reference: [3] Choban M., Chaber J., Nagami K.: On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces.Fund. Math. 84 (1974), 107-119. MR 0343244
Reference: [4] Jayne J., Rogers C.: Analytic Sets.Academic Press, London, 1980. Zbl 0589.54047
Reference: [5] Michael E.: $\aleph_0$-spaces.J. Mathematics and Mechanics 15.6 (1966), 983 -1002.
Reference: [6] Michael E.: Bi-quotient maps and cartesian products of quotient maps.Ann. Inst. Fourier, Grenoble 18 (1968), 2 287-302. Zbl 0175.19704, MR 0244964
Reference: [7] Michael E.: A quintuple quotient quest.General Topology and Appl. 2 (1972), 91-138. Zbl 0238.54009, MR 0309045
Reference: [8] Michael E.: Complete spaces and tri-quotient maps.Illinois J. Math. 21 (1977), 716-733. Zbl 0386.54007, MR 0467688
Reference: [9] Nagami K.: $\Sigma$-spaces.Fund. Math. 65 (1969), 169-192. Zbl 0181.50701, MR 0257963
Reference: [10] Saint Raymond J.: Caratérisations d'espaces polonais.Sém. Choquet (Initiation Anal.) 5 (1971-1973), 10.
Reference: [11] Valov V.: Bounded function spaces with the compact open topology.Bull. Acad. Polish Sci. 45.2 (1997), 171-179. MR 1466842
Reference: [12] Valov V.: Spaces of bounded functions.Houston J. Math. 25.3 (1999), 501-521. Zbl 0968.46019, MR 1730884
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_14.pdf 209.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo