Previous |  Up |  Next

Article

Title: Extensions of topological and semitopological groups and the product operation (English)
Author: Arhangel'skii, A. V.
Author: Hušek, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 1
Year: 2001
Pages: 173-186
.
Category: math
.
Summary: The main results concern commutativity of Hewitt-Nachbin realcompactification or Dieudonné completion with products of topological groups. It is shown that for every topological group $G$ that is not Dieudonné complete one can find a Dieudonné complete group $H$ such that the Dieudonné completion of $G\times H$ is not a topological group containing $G\times H$ as a subgroup. Using Korovin's construction of $G_\delta$-dense orbits, we present some examples showing that some results on topological groups are not valid for semitopological groups. (English)
Keyword: topological group
Keyword: Dieudonné completion
Keyword: PT-group
Keyword: realcompactness
Keyword: \newline Moscow space
Keyword: $C$-embedding
Keyword: product
MSC: 22A05
MSC: 54B10
MSC: 54D35
MSC: 54D60
MSC: 54H11
idZBL: Zbl 1053.54043
idMR: MR1825381
.
Date available: 2009-01-08T19:09:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119232
.
Reference: [Ar1] Arhangel'skii A.V.: Functional tightness, $Q$-spaces, and $\tau $-embeddings.Comment. Math. Univ. Carolinae 24:1 (1983), 105-120. MR 0703930
Reference: [Ar2] Arhangel'skii A.V.: Moscow spaces, Pestov-Tkačenko Problem, and $C$-embeddings.Comment. Math. Univ. Carolinae 41:3 (2000), 585-595. Zbl 1038.54013, MR 1795087
Reference: [Ar3] Arhangel'skii A.V.: On power homogeneous spaces.Proc. Yokohama Topology Conference, Japan, 1999 (to appear in Topology Appl. (2001)). Zbl 0994.54028, MR 1919289
Reference: [CN] Comfort W.W., Negrepontis S.: Continuous functions on products with strong topologies.Proc. 3rd Prague Top. Symp. 1971 (Academia, Prague 1972), pp.89-92. Zbl 0308.54005, MR 0358656
Reference: [CR] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [El] Ellis R.: Locally compact transformation groups.Duke Math. J. 24 (1957), 119-125. Zbl 0079.16602, MR 0088674
Reference: [En] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [Hu] Hušek M.: Realcompactness of function spaces and $\upsilon(P\times Q)$.General Topology and Appl. 2 (1972), 165-179. MR 0307181
Reference: [HP] Hušek M., Pelant J.: Extensions and restrictions in products of metric spaces.Topology Appl. 25 (1987), 245-252. MR 0889869
Reference: [HvD] Hušek M., de Vries J.: Preservation of products by functors close to reflectors.Topology Appl. 27 (1987), 171-189. MR 0911690
Reference: [Ko] Korovin A.V.: Continuous actions of pseudocompact groups and axioms of topological group.Comment. Math. Univ. Carolinae 33 (1992), 335-343. Zbl 0786.22002, MR 1189665
Reference: [Pa] Pašenkov V.V.: Extensions of compact spaces.Soviet Math. Dokl. 15:1 (1974), 43-47.
Reference: [PT] Pestov V.G., Tkačenko M.G.: Problem 3.28.in Unsolved Problems of Topological Algebra, Academy of Science, Moldova, Kishinev, ``Shtiinca'' 1985, p.18.
Reference: [Re] Reznichenko E.A.: Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups.Topology Appl. 59 (1994), 233-244. MR 1299719
Reference: [RD] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and Their Quotients.McGraw-Hill, New York, 1981.
Reference: [Sh] Shirota T.: A class of topological spaces.Osaka Math. J. 4 (1952), 23-40. Zbl 0047.41704, MR 0050872
Reference: [Tk] Tkačenko M.G.: Subgroups, quotient groups, and products of $R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
Reference: [Us] Uspenskij V.V.: Topological groups and Dugundji spaces.Matem. Sb. 180:8 (1989), 1092-1118. MR 1019483
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-1_13.pdf 251.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo