Previous |  Up |  Next

Article

Keywords:
Pettis integral; Fubini theorem; Darboux problem; measure of weak noncompactness
Summary:
In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.
References:
[1] Alexiewicz A., Orlicz W.: Some remarks on the existence and uniqueness of solutions of the hyperbolic equation. Studia Math. 15 156-160 (1956). MR 0079711 | Zbl 0070.09204
[2] Ball J.M.: Weak continuity properties of mappings and semi-groups. Proc. Royal Soc. Edinbourgh Sect.A 72 275-280 (1979). MR 0397495
[3] DeBlasi F.: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 259-262 (1977). MR 0482402
[4] DeBlasi F., Myjak J.: On the structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinbourgh Math. Soc. Ser.2 29 17-23 (1986). MR 0829175
[5] Bugajewski D., Szufla S.: Kneser's theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Analysis T.M.A. 20 169-173 (1993). MR 1200387 | Zbl 0776.34048
[6] Cichoń M.: Weak solutions of differential equations in Banach spaces. Disc. Math. Differential Inclusions 15 5-14 (1995). MR 1344523
[7] Cichoń M., Kubiaczyk I.: On the set of solutions of the Cauchy problem in Banach spaces. Arch. Math. 63 251-257 (1994). MR 1287254
[8] Cichoń M., Kubiaczyk I.: Kneser's theorems for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces. Annales Polon. Math. 62 13-21 (1995). MR 1348215 | Zbl 0836.34062
[9] Dawidowski M., Kubiaczyk I.: On bounded solutions of hyperbolic differential inclusion in Banach spaces. Demonstratio Math. 25 153-159 (1992). MR 1170678 | Zbl 0780.35120
[10] Dragoni R., Macki J.W., Nistri P., Zecca P.: Solution Sets of Differential Equations in Abstract Spaces. Pitman Research Notes in Mathematics Series 342, Longman, 1996. MR 1427944 | Zbl 0847.34004
[11] van Dulst D.: Characterizations of Banach Spaces Not Containing $l^1$. CWI Tract, Amsterdam, 1989. MR 1002733
[12] Geitz R.F.: Pettis integration. Proc. Amer. Math. Soc. 82 81-86 (1981). MR 0603606 | Zbl 0506.28007
[13] Górniewicz L., Pruszko T.: On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Math. 28 279-286 (1980). MR 0620202
[14] Górniewicz L., Bryszewski J., Pruszko T.: An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations. J. Math. Anal. Appl. 76 107-115 (1980). MR 0586649
[15] Knight W.J.: Solutions of differential equations in B-spaces. Duke Math. J. 41 437-442 (1974). MR 0344624 | Zbl 0288.34063
[16] Kubiaczyk I.: On a fixed point theorem for weakly sequentially continuous mapping. Disc. Math. Differential Inclusions 15 15-20 (1995). MR 1344524
[17] Michalak A.: On the Fubini theorem for the Pettis integral for bounded functions. Bull. Polish Sci. Math. 49 (1) (2001), in press. MR 1824153 | Zbl 0995.46026
[18] Mitchell A.R., Smith Ch.: An existence theorem for weak solutions of differential equations in Banach spaces. in Nonlinear Equations in Abstract Spaces, ed. by V. Laksmikantham, 1978, pp.387-404. MR 0502554 | Zbl 0452.34054
[19] Negrini P.: Sul problema di Darboux negli spazi di Banach. Boll. U.M.I. (5) 17-A 201-215 (1956).
[20] O'Regan D.: Fixed point theory for weakly sequentially continuous mappings. to appear.
[21] Pettis B.J.: On integration in vector spaces. Trans. Amer. Math. Soc. 44 277-304 (1938). MR 1501970 | Zbl 0019.41603
[22] Szep A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci. Math. 26 407-413 (1978).
Partner of
EuDML logo