Previous |  Up |  Next

Article

Title: On maximal functions over circular sectors with rotation invariant measures (English)
Author: Aimar, H.
Author: Forzani, L.
Author: Naibo, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 311-318
.
Category: math
.
Summary: Given a rotation invariant measure in $\Bbb R^n$, we define the maximal operator over circular sectors. We prove that it is of strong type $(p,p)$ for $p>1$ and we give necessary and sufficient conditions on the measure for the weak type $(1,1)$ inequality. Actually we work in a more general setting containing the above and other situations. (English)
Keyword: maximal functions
Keyword: spaces of homogeneous type
MSC: 42B25
MSC: 43A85
idZBL: Zbl 1054.42014
idMR: MR1832149
.
Date available: 2009-01-08T19:10:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119245
.
Reference: [1] Sjögren P.: A remark on the maximal functions for measures in $\Bbb R^n$.Amer. J. Math. 105 (1983), 1231-1233. MR 0714775
Reference: [2] Coifman R., Weiss G.: Analyse harmonique non-commutative sur certains espaces homogènes, étude de certaines intégrales singulières.Lectures Notes in Math., Vol 242, Springer-Verlag, 1971. Zbl 0224.43006, MR 0499948
Reference: [3] Pólya G., Szegö G.: Problems and Theorems in Analysis.Volume I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
Reference: [4] de Guzmán M.: Real Variable Methods in Fourier Analysis.North Holland, Amsterdam, 1981. MR 0596037
Reference: [5] Macías R., Segovia C.: Lipschitz functions on spaces of homogeneous type.Advances in Mathematics 33 (1979), 257-270. MR 0546295
Reference: [6] Aimar H., Harboure E., Iaffei B.: Extensions of a theorem of Stein and Zygmund.preprint.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_8.pdf 201.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo