Previous |  Up |  Next

Article

Title: The chromatic number of the product of two graphs is at least half the minimum of the fractional chromatic numbers of the factors (English)
Author: Tardif, Claude
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 353-355
.
Category: math
.
Summary: One consequence of Hedetniemi's conjecture on the chromatic number of the product of graphs is that the bound $\chi(G \times H) \geq \min \{ \chi_f(G), \chi_f(H) \}$ should always hold. We prove that $\chi(G \times H) \geq \frac{1}{2} \min \{ \chi_f(G), \chi_f(H) \}$. (English)
Keyword: Hedetniemi's conjecture
Keyword: (fractional) chromatic number
MSC: 05C15
idZBL: Zbl 1050.05057
idMR: MR1832153
.
Date available: 2009-01-08T19:10:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119249
.
Reference: [1] El-Zahar M., Sauer N.: The chromatic number of the product of two $4$-chromatic graphs is $4$.Combinatorica 5 (1985), 121-126. Zbl 0575.05028, MR 0815577
Reference: [2] Hedetniemi S.H.: Homomorphisms of graphs and automata.University of Michigan Technical Report 03105-44-T, 1966.
Reference: [3] Poljak S.: Coloring digraphs by iterated antichains.Comment. Math. Univ. Carolinae 32 (1991), 209-212. Zbl 0758.05053, MR 1137780
Reference: [4] Poljak S., Rödl V.: On the arc-chromatic number of a digraph.J. Combin. Theory Ser. B 31 (1981), 339-350. MR 0630982
Reference: [5] Scheinerman E.R., Ullman D.H.: Fractional Graph Theory.Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1997, xviii+211 pp. Zbl 0891.05003, MR 1481157
Reference: [6] Zhu X.: A survey on Hedetniemi's conjecture.Taiwanese J. Math. 2 (1998), 1-24. Zbl 0906.05024, MR 1609464
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_12.pdf 162.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo