Previous |  Up |  Next

Article

Title: Maximal nowhere dense $P$-sets in basically disconnected spaces and $F$-spaces (English)
Author: Koldunov, A. V.
Author: Veksler, A. I.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 363-378
.
Category: math
.
Summary: In [5] the following question was put: are there any maximal n.d. sets in $\omega^*$? Already in [9] the negative answer (under {\bf MA}) to this question was obtained. Moreover, in [9] it was shown that no $P$-set can be maximal n.d. In the present paper the notion of a maximal n.d. $P$-set is introduced and it is proved that under {\bf CH} there is no such a set in $\omega^*$. The main results are Theorem 1.10 and especially Theorem 2.7(ii) (with Example in Section 3) in which the problem of the existence of maximal n.d. $P$-sets in basically disconnected compact spaces with rich families of n.d. $P$-sets is actually solved. (English)
Keyword: maximal n.d. set
Keyword: $P$-set
Keyword: maximal n.d. $P$-set
Keyword: compact space
Keyword: basically disconnected space
Keyword: $F$-space
MSC: 54B05
MSC: 54D30
MSC: 54D40
MSC: 54G05
idZBL: Zbl 1053.54041
idMR: MR1832155
.
Date available: 2009-01-08T19:10:46Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119251
.
Reference: [1] Hechler S.H.: Generalizations of almost disjointness, $c$-sets, and the Baire number of $\beta N\backslash N$.General Topology Appl. 8:1 93-110 (1978). MR 0472520
Reference: [2] Henriksen M., Vermeer J., Woods R.G.: Quasi-$F$-covers of Tychonoff space.Trans. Amer. Math. Soc. 303:2 (1987), 779-803. MR 0902798
Reference: [3] Koldunov A.V.: $\sigma$-completion and $0$-completion of $C(B)$ (in Russian).Functional Analysis (Uljanovsk), no. 6 (1976), 76-83. MR 0626059
Reference: [4] Koldunov A.V.: On maximal nowhere dense sets (in Russian).Sibirsk. Mat. Zh. 21:4 (1980), 103-111; English transl.: Siberian Math. J. 21 (1981), 558-563. MR 0579882
Reference: [5] van Mill J., Reed E.M. (eds.): Open Problems in Topology.North-Holland Co., Amsterdam, 1990. Zbl 0877.54001, MR 1078636
Reference: [6] Park Y.L.: The Quasi-$F$-cover as a filter space.Houston J. Math. 9:1 (1983), 101-109. MR 0699052
Reference: [7] Simon P.: A note on nowhere dense sets in $ømega ^*$.Comment. Math. Univ. Carolinae 31:1 (1990), 145-147. Zbl 0696.54019, MR 1056181
Reference: [8] Simon P.: A note on almost disjoint refinement.Acta Univ. Carolinae, Math. et Phys. 37:2 (1996), 89-99. Zbl 0883.04003, MR 1600453
Reference: [9] Veksler A.I.: Maximal nowhere dense sets in topological spaces (in Russian).Izvestiya VUZ, Mathem. no. 5 (1975), 9-16. MR 0410705
Reference: [10] Veksler A.I.: $P'$-sets in regular spaces.Colloquia Math. Soc. J. Bolyai 23 Topology, Budapest, pp.1211-1225 (1978). MR 0588868
Reference: [11] Veksler A.I.: Nettings in topological spaces (in Russian).Izvestiya VUZ, Mathem. no. 3 (1984), 105-114; English transl.: Sov. Math. 28:3, 32-42. MR 0770230
Reference: [12] Veksler A.I.: Maximal nowhere dense sets and their applications to problems of existence of remote points and of weak $P$-points.Math. Nachr. 150 (1991), 263-276. Zbl 0737.54010, MR 1109658
Reference: [13] Vermeer J.: The smallest basically disconnected preimage of a space.Topology Appl. 17:3 (1984), 217-232. Zbl 0593.54036, MR 0752272
Reference: [14] Zakharov V.K., Koldunov A.V.: The sequential absolute and its characterization (in Russian).DAN SSSR 253:2 (1980), 280-284; English transl.: Soviet. Math. Dokl. 22:1 (1980), 70-74. MR 0581394
Reference: [15] Zakharov V.K., Koldunov A.V.: Characterization of the $\sigma$-covering of compactum (in Russian).Sibirsk. Mat. Zh. 23:6 (1982), 91-99; English transl.: Siberian Math. J. 23:6 (1982), 834-851. MR 0682910
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_14.pdf 289.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo