Previous |  Up |  Next

Article

Title: Isotype subgroups of mixed groups (English)
Author: Megibben, Charles
Author: Ullery, William
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 421-442
.
Category: math
.
Summary: In this paper, we initiate the study of various classes of isotype subgroups of global mixed groups. Our goal is to advance the theory of $\Sigma$-isotype subgroups to a level comparable to its status in the simpler contexts of torsion-free and $p$-local mixed groups. Given the history of those theories, one anticipates that definitive results are to be found only when attention is restricted to global $k$-groups, the prototype being global groups with decomposition bases. A large portion of this paper is devoted to showing that primitive elements proliferate in $\Sigma$-isotype subgroups of such groups. This allows us to establish the fundamental fact that finite rank $\Sigma$-isotype subgroups of $k$-groups are themselves $k$-groups. (English)
Keyword: global $k$-group
Keyword: $\Sigma$-isotype subgroup
Keyword: $\ast$-isotype subgroup
Keyword: knice subgroup
Keyword: primitive element
Keyword: $\ast$-valuated coproduct
MSC: 20K21
MSC: 20K27
idZBL: Zbl 1102.20037
idMR: MR1859590
.
Date available: 2009-01-08T19:11:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119257
.
Reference: Hill P., Megibben C.: Torsion free groups.Trans. Amer. Math. Soc. 295 (1986), 735-751. Zbl 0597.20047, MR 0833706
Reference: Hill P., Megibben C.: Knice subgroups of mixed groups.Abelian Group Theory Gordon-Breach New York (1987), 89-109. Zbl 0653.20057, MR 1011306
Reference: Hill P., Megibben C.: Pure subgroups of torsion-free groups.Trans. Amer. Math. Soc. 303 (1987), 765-778. Zbl 0627.20028, MR 0902797
Reference: Hill P., Megibben C.: Mixed groups.Trans. Amer. Math. Soc. 334 (1992), 121-142. Zbl 0798.20050, MR 1116315
Reference: Hill P., Megibben C., Ullery W.: $\Sigma$-isotype subgroups of local $k$-groups.Contemp. Math. 273 (2001), 159-176. Zbl 0982.20038, MR 1817160
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_1.pdf 306.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo