Article
Keywords:
groupoid; subdirect irreducibility
Summary:
A groupoid $H$ is a homomorphic image of a subdirectly irreducible groupoid $G$ (over its monolith) if and only if $H$ has a smallest ideal.
References:
                        
[1] Ježek J., Kepka T.: 
Ideal-free CIM-groupoids and open convex sets. Lecture Notes in Math. 1004 166-175 Springer Verlag (1983). 
MR 0716182[2] Kepka T.: 
On a class of subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. (1981), 22.1 17-24. 
MR 0635973 | 
Zbl 0478.08005[3] Kepka T.: 
A note on subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. (1981), 22.1 25-28. 
MR 0635974 | 
Zbl 0481.08001