Previous |  Up |  Next

Article

Title: On projectively quotient functors (English)
Author: Zhuraev, T. F.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 561-573
.
Category: math
.
Summary: We introduce notions of projectively quotient, open, and closed functors. We give sufficient conditions for a functor to be projectively quotient. In particular, any finitary normal functor is projectively quotient. We prove that the sufficient conditions obtained are necessary for an arbitrary subfunctor $\Cal F$ of the functor $\Cal P$ of probability measures. At the same time, any ``good'' functor is neither projectively open nor projectively closed. (English)
Keyword: projectively closed functor
Keyword: finitary functor
Keyword: functor of probability measures
MSC: 18B30
MSC: 54B30
MSC: 54D30
idZBL: Zbl 1053.54019
idMR: MR1860245
.
Date available: 2009-01-08T19:16:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119271
.
Reference: [1] Shchepin E.V.: Functors and uncountable powers of compact spaces.Uspekhi Mat. Nauk 36 (1981), 3 3-62. MR 0622720
Reference: [2] Basmanov V.N.: Covariant functors, retracts and dimension.Dokl. Akad. Nauk USSR 271 (1983), 1033-1036. Zbl 0544.54007, MR 0722013
Reference: [3] Chigogidze A.Ch.: Extension of normal functors.Vestnik Mosk. Univ. Ser. I Mat. Mekh. 6 (1984), 40-42. Zbl 0588.54016, MR 0775298
Reference: [4] Fedorchuk V.V.: Probability measures in topology.Uspekhi Mat. Nauk 46 (1991), 1 41-80. Zbl 0735.54033, MR 1109036
Reference: [5] Fedorchuk V.V., Filippov V.V.: General Topology: Basic Constructions.Moscow, Mosk. Gos. Univ., 1988. Zbl 0658.54001, MR 1095303
Reference: [6] Engelking R.: General Topology.Warszawa, PWN, 1977. Zbl 0684.54001, MR 0500780
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_15.pdf 234.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo