Article
Keywords:
Penrose transform; conformally invariant operators
Summary:
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space.
References:
Baston R.J., Eastwood M.G.:
The Penrose Transform and its Interaction with Representation Theory. Oxford University Press (1989).
MR 1038279
Eastwood M.G.:
A duality for homogeneous bundles on twistor space. J. London Math. Soc. 31 (1985), 349-356.
MR 0809956 |
Zbl 0534.14008
Griffiths P., Harris J.:
Principles of Algebraic Geometry. A Wiley-Intescience Publication (1978).
MR 0507725 |
Zbl 0408.14001
Gunning R.C., Rossi H.:
Analytic Functions of Several Complex Variables. Prentice-Hall (1965).
MR 0180696 |
Zbl 0141.08601
Rocha-Cardini A.:
Splitting criteria for $\mathfrak g$-modules induced from parabolic and the Bernstain-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mathfrak g$-module. Trans. Amer. Math. Soc. (1980), 262 335-361.
MR 0586721
Slovák J.:
Natural operators on conformal manifolds. Dissertation (1994), Masaryk University Brno.
MR 1255551
Ward R.S., Wells R.O.:
Twistor Geometry and Field Theory. Cambridge University Press (1983).
MR 1054377