Title:
|
Properties of operators occurring in the Penrose transform (English) |
Author:
|
Šír, Zbyněk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
681-690 |
. |
Category:
|
math |
. |
Summary:
|
It is shown that operators occurring in the classical Penrose transform are differential. These operators are identified depending on line bundles over the twistor space. (English) |
Keyword:
|
Penrose transform |
Keyword:
|
conformally invariant operators |
MSC:
|
32L25 |
MSC:
|
53C28 |
idZBL:
|
Zbl 1090.53504 |
idMR:
|
MR1883377 |
. |
Date available:
|
2009-01-08T19:17:42Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119284 |
. |
Reference:
|
Baston R.J., Eastwood M.G.: The Penrose Transform and its Interaction with Representation Theory.Oxford University Press (1989). MR 1038279 |
Reference:
|
Buchdahl N.P.: On the relative de Rham sequence.Proc. Amer. Math. Soc. 87 (1983), 363-366. Zbl 0511.58001, MR 0681850 |
Reference:
|
Eastwood M.G.: A duality for homogeneous bundles on twistor space.J. London Math. Soc. 31 (1985), 349-356. Zbl 0534.14008, MR 0809956 |
Reference:
|
Griffiths P., Harris J.: Principles of Algebraic Geometry.A Wiley-Intescience Publication (1978). Zbl 0408.14001, MR 0507725 |
Reference:
|
Gunning R.C., Rossi H.: Analytic Functions of Several Complex Variables.Prentice-Hall (1965). Zbl 0141.08601, MR 0180696 |
Reference:
|
Rocha-Cardini A.: Splitting criteria for $\mathfrak g$-modules induced from parabolic and the Bernstain-Gelfand-Gelfand resolution of a finite dimensional, irreducible $\mathfrak g$-module.Trans. Amer. Math. Soc. (1980), 262 335-361. MR 0586721 |
Reference:
|
Slovák J.: Natural operators on conformal manifolds.Dissertation (1994), Masaryk University Brno. MR 1255551 |
Reference:
|
Ward R.S., Wells R.O.: Twistor Geometry and Field Theory.Cambridge University Press (1983). MR 1054377 |
. |