Previous |  Up |  Next

Article

Title: Equation with residuated functions (English)
Author: Cuninghame-Green, R. A.
Author: Zimmermann, K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 729-740
.
Category: math
.
Summary: The structure of solution-sets for the equation $F(x)=G(y)$ is discussed, where $F,G$ are given residuated functions mapping between partially-ordered sets. An algorithm is proposed which produces a solution in the event of finite termination: this solution is maximal relative to initial trial values of $x,y$. Properties are defined which are sufficient for finite termination. The particular case of max-based linear algebra is discussed, with application to the synchronisation problem for discrete-event systems; here, if data are rational, finite termination is assured. Numerical examples are given. For more general residuated real functions, lower semicontinuity is sufficient for convergence to a solution, if one exists. (English)
Keyword: systems of nonlinear equations
Keyword: residuation theory
Keyword: max-algebras
MSC: 47H05
MSC: 47J05
MSC: 90C27
MSC: 93C65
idZBL: Zbl 1068.93039
idMR: MR1883381
.
Date available: 2009-01-08T19:18:13Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119288
.
Reference: [1] Baccelli F.L., Cohen G., Olsder G.J., Quadrat J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems.Wiley, Chichester, 1992. Zbl 0824.93003, MR 1204266
Reference: [2] Blyth T.S., Janowitz M.: Residuation Theory.Pergamon, Oxford, 1972. Zbl 0301.06001, MR 0396359
Reference: [3] Cuninghame-Green R.A., Butkovic P.: The Equation $A øtimes x = B øtimes y$ over $(\{ - \infty \} \cup {\Bbb R}, \max,+)$.Theoretical Computer Science, Special Issue on $(\max,+)$ Algebra, to appear. MR 1957609
Reference: [4] Cuninghame-Green R.A., Cechlarova K.: Residuation in fuzzy algebra and some applications.Fuzzy Sets and Systems 71 227-239 (1995). Zbl 0845.04007, MR 1329610
Reference: [5] Cuninghame-Green R.A.: Minimax Algebra.Lecture Notes in Economics and Mathematical Systems No. 166, Springer-Verlag, Berlin, 1979. Zbl 0739.90073, MR 0580321
Reference: [6] Walkup E.A., Borriello G.: A General Linear Max-Plus Solution Technique.in Idempotency (ed. J. Gunawardena), Cambridge, 1998. Zbl 0898.68035
Reference: [7] Zimmermann U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures.North Holland, Amsterdam, 1981. Zbl 0466.90045, MR 0609751
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_13.pdf 226.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo