Previous |  Up |  Next

Article

Title: On the Dirichlet problem for functions of the first Baire class (English)
Author: Spurný, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 4
Year: 2001
Pages: 721-728
.
Category: math
.
Summary: Let $\Cal H$ be a simplicial function space on a metric compact space $X$. Then the Choquet boundary $\operatorname{Ch}X$ of $\Cal H$ is an $F_\sigma$-set if and only if given any bounded Baire-one function $f$ on $\operatorname{Ch}X$ there is an $\Cal H$-affine bounded Baire-one function $h$ on $X$ such that $h=f$ on $\operatorname{Ch}X$. This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set $X$. (English)
Keyword: weak Dirichlet problem
Keyword: function space
Keyword: Choquet simplexes
Keyword: Baire-one functions
MSC: 26A21
MSC: 31B05
MSC: 31C45
MSC: 46A55
idZBL: Zbl 1090.46500
idMR: MR1883380
.
Date available: 2009-01-08T19:18:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119287
.
Reference: [1] Alfsen E.M.: Compact convex sets and boundary integrals.Springer-Verlag New York-Heidelberg (1971). Zbl 0209.42601, MR 0445271
Reference: [2] Bauer H.: Axiomatische behandlung des Dirichletschen problems fur elliptische und parabolische differentialgleichungen.Math. Ann. 146 (1962), 1-59. MR 0144064
Reference: [3] Boboc N., Cornea A.: Convex cones of lower semicontinuous functions on compact spaces.Rev. Roum. Math. Pures. App. 12 (1967), 471-525. Zbl 0155.17301, MR 0216278
Reference: [4] Bliedtner J., Hansen W.: Simplicial cones in potential theory.Invent. Math. (2) 29 (1975), 83-110. Zbl 0308.31011, MR 0387630
Reference: [5] Capon M.: Sur les fonctions qui vérifient le calcul barycentrique.Proc. London Math. Soc. (3) 32 (1976), 163-180. Zbl 0313.46003, MR 0394148
Reference: [6] Engelking R.: General Topology.Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [7] Choquet G.: Lectures on analysis vol. II: Representation theory.W.A. Benjamin, Inc., New York-Amsterdam (1969). Zbl 0181.39602, MR 0250012
Reference: [8] Jellett F.: On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex.Quart. J. Math. Oxford (2) 36 (1985), 71-73. Zbl 0582.46010, MR 0780351
Reference: [9] Lacey H.E.. Morris P.D.: On spaces of type $A(K)$ and their duals.Proc. Amer. Math. Soc. 23 (1969), 151-157. MR 0625855
Reference: [10] Lukeš J., Malý J., Zajíček L.: Fine topology methods in real analysis and potential theory.Lecture Notes in Math. 1189 Springer-Verlag (1986). MR 0861411
Reference: [11] Phelps R.R.: Lectures on Choquet's theorem.D. Van Nostrand Co. (1966). Zbl 0135.36203, MR 0193470
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-4_12.pdf 207.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo