Previous |  Up |  Next

Article

Title: Minimally nonassociative Moufang loops with a unique nonidentity commutator are ring alternative (English)
Author: Chein, Orin
Author: Goodaire, Edgar G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 1-8
.
Category: math
.
Summary: We investigate finite Moufang loops with a unique nonidentity commutator which are not associative, but all of whose proper subloops are associative. Curiously, perhaps, such loops turn out to be ``ring alternative'', in the sense that their loop rings are alternative rings. (English)
Keyword: Moufang loops
Keyword: RA loops
Keyword: alternative rings
Keyword: minimal nonassociativity
MSC: 17D05
MSC: 20N05
idZBL: Zbl 1068.20069
idMR: MR1903302
.
Date available: 2009-01-08T19:18:54Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119295
.
Reference: [Bru58] Bruck R.H.: A survey of binary systems.Ergeb. Math. Grenzgeb., vol. 20, Springer-Verlag, 1958. Zbl 0141.01401, MR 0093552
Reference: [CG86] Chein O., Goodaire E.G.: Loops whose loop rings are alternative.Comm. Algebra 14 (1986), 2 293-310. Zbl 0582.17015, MR 0817047
Reference: [CG90a] Chein O., Goodaire E.G.: Loops whose loop rings in characteristic $2$ are alternative.Comm. Algebra 18 (1990), 3 659-688. Zbl 0718.20034, MR 1052760
Reference: [CG90b] Chein O., Goodaire E.G.: Moufang loops with a unique nonidentity commutator (associator, square).J. Algebra 130 (1990), 2 369-384. Zbl 0695.20040, MR 1051308
Reference: [Che74] Chein O.: Moufang loops of small order I.Trans. Amer. Math. Soc. 188 (1974), 31-51. Zbl 0286.20088, MR 0330336
Reference: [Che78] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), 197 1-131. Zbl 0378.20053, MR 0466391
Reference: [CR72] Chein O., Robinson D.A.: An ``extra'' law for characterizing Moufang loops.Proc. Amer. Math. Soc. 33 (1972), 29-32. Zbl 0215.40302, MR 0292987
Reference: [Fen68] Fenyves F.: Extra loops I.Publ. Math. Debrecen 15 (1968), 235-238. Zbl 0172.02401, MR 0237695
Reference: [GJM96] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative loop rings.North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996. Zbl 0878.17029, MR 1433590
Reference: [GP87] Goodaire E.G., Parmenter M.M.: Semi-simplicity of alternative loop rings.Acta Math. Hungar. 50 (1987), 3-4 241-247. Zbl 0634.17014, MR 0918159
Reference: [JLM95] Jespers E., Leal G., Polcino Milies C.: Classifying indecomposable RA loops.J. Algebra 176 (1995), 5057-5076. MR 1351625
Reference: [MM03] Miller G.A., Moreno H.C.: Nonabelian groups in which every subgroup is abelian.Trans. Amer. Math. Soc. 4 (1903), 398-404. MR 1500650
Reference: [Pfl90] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_1.pdf 196.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo