Previous |  Up |  Next

Article

Title: A characterization of $C_2(q)$ where $q>5$ (English)
Author: Iranmanesh, A.
Author: Khosravi, B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 9-21
.
Category: math
.
Summary: The order of every finite group $G$ can be expressed as a product of coprime positive integers $m_1,\dots, m_t$ such that $\pi (m_i)$ is a connected component of the prime graph of $G$. The integers $m_1,\dots, m_t$ are called the order components of $G$. Some non-abelian simple groups are known to be uniquely determined by their order components. As the main result of this paper, we show that the projective symplectic groups $C_2(q)$ where $q>5$ are also uniquely determined by their order components. As corollaries of this result, the validities of a conjecture by J.G. Thompson and a conjecture by W. Shi and J. Be for $C_2(q)$ with $q>5$ are obtained. (English)
Keyword: prime graph
Keyword: order component
Keyword: finite group
Keyword: simple group
MSC: 05C25
MSC: 20D05
MSC: 20D60
MSC: 20G40
idZBL: Zbl 1068.20020
idMR: MR1903303
.
Date available: 2009-01-08T19:19:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119296
.
Reference: [1] Chen G.Y.: On Frobenius and $2$-Frobenius group.J. Southwest China Normal Univ. 20 (5) (1995), 485-487.
Reference: [1] Chen G.Y.: A new characterization of $G_2(q)$, $[q\equiv 0 ({mod} 3)]$.J. Southwest China Normal Univ. (1996), 47-51. MR 1374160
Reference: [3] Chen G.Y.: A new characterization of sporadic simple groups.Algebra Colloq. 3 1 (1996), 49-58. Zbl 0851.20011, MR 1374160
Reference: [4] Chen G.Y.: On Thompson's conjecture.J. Algebra 185 (1996), 184-193. Zbl 0861.20018, MR 1409982
Reference: [5] Chen G.Y.: Further reflections on Thompson's conjecture.J. Algebra 218 (1999), 276-285. Zbl 0931.20020, MR 1704687
Reference: [6] Chen G.Y.: A new characterization of Suzuki-Ree groups.Sci. in China (Ser. A) 27 (5) (1997), 430-433. MR 1481680
Reference: [7] Chen G.Y.: A new characterization of $E_8(q)$.J. Southwest China Normal Univ. 21 (3) (1996), 215-21. MR 1374160
Reference: [8] Chen G.Y.: A new characterization of $PSL_2(q)$.Southeast Asian Bull. Math. 22 (1998), 257-263. MR 1684163
Reference: [9] Gruenberg K.W., Roggenkamp K.W.: Decomposition of the augmentation ideal and of the relation modules of a finite group.Proc. London Math. Soc. 31 (1975), 146-166. Zbl 0313.20004, MR 0374247
Reference: [10] Iranmanesh A., Alavi S.H.: A new characterization of $A_p$ where $p$ and $p-2$ are primes.Korean J. Comput. & Appl. Math. 8 3 (2001), 665-673. Zbl 1013.20010, MR 1848926
Reference: [11] Iranmanesh A., Alavi S.H., Khosravi B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power.J. Pure Appl. Algebra, to appear. MR 1904845
Reference: [12] Iranmanesh A., Khosravi B.: A characterization of $F_4(q)$ where $q$ is even.Far East J. Math. Sci. 6 (2) (2000), 853-859. MR 1808700
Reference: [13] Kondtrat'ev A.S.: Prime graph components of finite groups.Math. USSR-sb. 67 (1) (1990), 235-247. MR 1015040
Reference: [14] Shi W.: A new characterization of the sporadic simple groups.Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin, New York, 1989, pp. 531-540. Zbl 0657.20017, MR 0981868
Reference: [15] Shi W.: Pure quantitative characterization of finite simple groups I.Progress in Natural Science 4 (3) (1994), 316-326. MR 1402664
Reference: [16] Shi W., Jianxing Bi: A new characterization of some simple groups of Lie type.Contemporary Math. 82 (1989), 171-180. MR 0982286
Reference: [17] Shi W., Jianxing Bi: A characteristic property for each finite projective special linear group.Lecture Notes in Mathematics 1456 (1990), 171-180. Zbl 0718.20009, MR 1092230
Reference: [18] Shi W., Jianxing Bi: A new characterization of the alternating groups.Southeast Asian Bull. Math. 17 (1) (1992), 81-90. Zbl 0790.20030, MR 1173612
Reference: [19] Steinberg R.: Automorphism of finite linear groups.Canad. J. Math. 12 (1960), 606-615. MR 0121427
Reference: [20] Williams J.S.: Prime graph components of finite groups.J. Algebra 69 (1981), 487-513. Zbl 0471.20013, MR 0617092
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_2.pdf 250.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo