Previous |  Up |  Next

Article

Title: A counterexample to the smoothness of the solution to an equation arising in fluid mechanics (English)
Author: Montgomery-Smith, Stephen
Author: Pokorný, Milan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 61-75
.
Category: math
.
Summary: We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for the Navier-Stokes equations. (English)
Keyword: Navier-Stokes equations
Keyword: Euler equations
Keyword: regularity of systems of PDE's
Keyword: Eulerian-Lagrangian description of viscous fluids
MSC: 35Q35
MSC: 55M25
MSC: 60H15
MSC: 60H30
MSC: 76D03
MSC: 76D05
idZBL: Zbl 1090.35146
idMR: MR1903307
.
Date available: 2009-01-08T19:19:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119300
.
Reference: [1] Chorin A.J.: Vorticity and Turbulence.Applied Mathematical Sciences 103, Springer-Verlag, New York, 1994. Zbl 0795.76002, MR 1281384
Reference: [2] Constantin P.: An Eulerian-Lagrangian approach to the Navier-Stokes equations.preprint, 2000. Zbl 0988.76020, MR 1815721
Reference: [3] DiPerna R.J., Majda A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Comm. Math. Phys. 108 (1987), 667-212. Zbl 0626.35059, MR 0877643
Reference: [4] Kiselev A.A., Ladyzhenskaya O.A.: On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid (in Russian).Izv. Akad. Nauk SSSR. Ser. Mat. 21 (1957), 655-680. MR 0100448
Reference: [5] Ladyzhenskaja O.A., Solonnikov V.A., Uralceva N.N.: Linear and quasilinear equations of parabolic type (in Russian).Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR 0241822
Reference: [6] Leray J.: Sur le mouvement d'un liquide visqueux emplisant l'espace.Acta Math. 63 (1934), 193-248. MR 1555394
Reference: [7] Lions P.-L.: Mathematical Topics in Fluid Mechanics.Vol. 1, Clarendon Press, Oxford, 1996. Zbl 0908.76004, MR 1422251
Reference: [8] Maunder C.R.F.: Algebraic Topology.Cambridge University Press, Cambridge-New York, 1980. Zbl 0435.55001, MR 0694843
Reference: [9] Oru F.: Rôle des oscillation dans quelques problèmes d'analyse non-linéaire.Ph.D. Thesis, ENS Cachan, 1998.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_6.pdf 265.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo