Title:
|
Weighted Miranda-Talenti inequality and applications to equations with discontinuous coefficients (English) |
Author:
|
Leonardi, S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
43-59 |
. |
Category:
|
math |
. |
Summary:
|
Let $\Omega $ be an open bounded set in $\Bbb R^{n}$ $(n\geq 2)$, with $C^2$ boundary, and $N^{p,\lambda}(\Omega )$ ($1 < p < +\infty $, $0\leq \lambda < n$) be a weighted Morrey space. In this note we prove a weighted version of the Miranda-Talenti inequality and we exploit it to show that, under a suitable condition of Cordes type, the Dirichlet problem: $$ \cases \sum_{i,j=1}^n a_{ij}(x) \frac{\partial ^2 u}{\partial x_i \partial x_j} = f(x) \in N^{p,\lambda }(\Omega) \quad & \text{ in } \Omega \ u=0 & \text{ on } \partial \Omega \endcases $$ has a unique strong solution in the functional space $$ \left\{ u \in W^{2,p} \cap W^{1,p}_o(\Omega ) : \frac{\partial ^2 u}{\partial x_i \partial x_j} \in N^{p,\lambda}(\Omega ), i,j=1,2,\,\ldots, n\right\}. $$ (English) |
Keyword:
|
Miranda-Talenti inequality |
Keyword:
|
nonvariational elliptic equations |
Keyword:
|
Hölder regularity |
MSC:
|
35B45 |
MSC:
|
35B65 |
MSC:
|
35J25 |
MSC:
|
35J60 |
MSC:
|
35R05 |
idZBL:
|
Zbl 1090.35045 |
idMR:
|
MR1903306 |
. |
Date available:
|
2009-01-08T19:19:25Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119299 |
. |
Reference:
|
[1] Adams R.A.: Sobolev Spaces.Academic Press Inc., Orlando, 1977. Zbl 1098.46001 |
Reference:
|
[2] Brezis H.: Analisi Funzionale.Liguori Editore, Napoli, 1986. |
Reference:
|
[3] Campanato S.: Maggiorazioni interpolatorie negli spazi $H^{m,p}_{\lambda}(Ømega)$.Ann. Mat. Pura Appl. Ser. IV LXXV (1967), 261-276. MR 0216284 |
Reference:
|
[4] Campanato S.: Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale.Ann. Scuola. Norm. Sup. Pisa (III) XXI Fasc. IV (1967), 701-707. Zbl 0157.42202, MR 0224996 |
Reference:
|
[5] Campanato S.: Non variational differential systems. A condition for local existence and uniqueness.Proceedings of the Caccioppoli Conference (1989), Ricerche di Matem., Suppl., XL (1991), 129-140. Zbl 0796.35052, MR 1306303 |
Reference:
|
[6] Campanato S.: On the condition of nearness between operators.Ann. Mat. Pura Appl. Ser. IV CLXVII (1994), 243-256. Zbl 0820.47050, MR 1313557 |
Reference:
|
[7] Campanato S.: Attuale formulazione della teoria degli operatori vicini e attuale definizione di operatore ellittico.Le Matematiche LI 2 (1996), 291-298. |
Reference:
|
[8] Campanato S., Cannarsa P.: Second order nonvariational elliptic systems.Bollettino U.M.I. (5) 17-B (1980), 1365-1394. Zbl 0449.35033, MR 0770854 |
Reference:
|
[9] Coifman R.R., Fefferman C.: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241-250. Zbl 0291.44007, MR 0358205 |
Reference:
|
[10] Cordes H.O.: Über die erste Rundwertaufgabe bei quasi linearen Differential gleichungen zweiter Ordunung in mehr als zwei Variablen Math. Ann..131 (1956), 278-312. MR 0091400 |
Reference:
|
[11] Cordes H.O.: Vereinfachter Beweis der Existenz einer Apriori-Holderkonstanten.Math. Ann. 138 (1959), 155-178. MR 0109256 |
Reference:
|
[12] Cordes H.O.: Zero order a priori estimates for solution of elliptic differential equations.Proc. of Symposia in Pure Math. IV, pp.157-166, 1961. MR 0146511 |
Reference:
|
[13] García-Cuerva J., Rubio de Francia J.L.: Weighted Norm Inequalities and Related Topics.North Holland Math. Studies 116, Amsterdam, 1985. MR 0848147 |
Reference:
|
[14] Giaquinta M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems.Annals of Math. Studies, vol. 105 Princeton University Press, Princeton, 1983. Zbl 0516.49003, MR 0717034 |
Reference:
|
[15] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.Second Edit., Springer Verlag, 1983. Zbl 1042.35002, MR 0737190 |
Reference:
|
[16] Giusti E.: Sulla regolarità delle soluzioni di una classe di equazioni ellittiche.Rend. Sem. Matem. Univ. Padova XXXIX (1967), 362-375. Zbl 0164.13302, MR 0226173 |
Reference:
|
[17] Giusti E.: Equazioni Ellittiche del Secondo Ordine.Pitagora Editrice, Bologna, 1978. |
Reference:
|
[18] Grisvard P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, 1985. Zbl 0695.35060, MR 0775683 |
Reference:
|
[19] Guglielmino F.: Nuovi contributi allo studio delle equazioni paraboliche del secondo ordine di tipo non variazionale.Ricerche di Matem. 14 (1965), 124-144. Zbl 0141.29301, MR 0201832 |
Reference:
|
[20] Koshelev A.I.: Regularity Problem for Quasilinear Elliptic and Parabolic Systems.Springer Verlag, 1995. Zbl 0847.35023, MR 1442954 |
Reference:
|
[21] Leonardi S.: On the Campanato nearness condition.Le Matematiche 48.1 (1993), 179-181. Zbl 0805.47067, MR 1283760 |
Reference:
|
[22] Leonardi S.: Remarks on the Regularity of Solutions of Elliptic Systems.Kluwer Academic/Plenum Publishers, pp.325-344, New York, 1999. Zbl 0952.35034, MR 1727457 |
Reference:
|
[23] Miranda C.: Istituzioni di Analisi Funzionale Lineare.U.M.I. 1978. Zbl 0697.46002 |
Reference:
|
[24] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384 |
Reference:
|
[25] Muckenhoupt B., Whedeen R.L.: Weighted norm inequalities for singular and fractional integrals.Trans. Amer. Math. Soc. 161 (1971), 249-258. MR 0285938 |
Reference:
|
[26] Murthy M.K.V., Stampacchia G.: Boundary value problems for some degenerate-elliptic operators.Ann. Mat. Pura Appl. Ser. IV 80 (1968), 1-122. Zbl 0185.19201, MR 0249828 |
Reference:
|
[27] Nečas J.: On the Regularity of Weak Solutions to Nonlinear Elliptic Systems of Partial Differential Equations.Lectures at Scuola Normale Sup. Pisa, 1979. |
Reference:
|
[28] Nicolosi F.: Problemi parabolici in più variabili.Le Matematiche XXVII 1 (1972), 153-166. Zbl 0264.35041, MR 0326173 |
Reference:
|
[29] Pucci C.: Equazioni ellittiche con soluzioni in $W^{2,p}$, $p<2$.Convegno sulle Equaz. alle Derivate Parziali, pp.145-148, Bologna, 1967. MR 0271530 |
Reference:
|
[30] Pucci C., Talenti G.: Elliptic (second order) partial differential equations with measurable coefficients and approximating integral equations.Adv. Math. 19 1 (1976), 48-105. MR 0419989 |
Reference:
|
[31] Stein E.M.: Note on singular integrals.Proc. Amer. Math. Soc. 8 (1957), 250-254. Zbl 0077.27301, MR 0088606 |
Reference:
|
[32] Stein E.M.: Singular Integrals and Differentiability Properties of Functions.Princeton Univ. Press, Princeton, New Jersey, 1970. Zbl 0281.44003, MR 0290095 |
Reference:
|
[33] Stein E.M.: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals.Princeton Univ. Press, 1993. Zbl 0821.42001, MR 1232192 |
Reference:
|
[34] Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Univ. Press, Princeton, New Jersey, 1971. Zbl 0232.42007, MR 0304972 |
Reference:
|
[35] Talenti G.: Sopra una classe di equazioni ellittiche a coefficienti misurabili.Ann. Mat. Pura Appl. LXIX (1965), 285-304. Zbl 0145.36602, MR 0201816 |
Reference:
|
[36] Talenti G.: Equazioni lineari ellittiche in due variabili.Le Matematiche XXI (1966), 339-376. Zbl 0149.07402, MR 0204845 |
Reference:
|
[37] Torchinsky A.: Real-variable Methods in Harmonic Analysis.Academic Press Inc., Orlando, 1986. Zbl 1097.42002, MR 0869816 |
. |