Previous |  Up |  Next

Article

Title: A proof for the Blair-Hager-Johnson theorem on absolute $z$-embedding (English)
Author: Yamazaki, Kaori
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 1
Year: 2002
Pages: 175-179
.
Category: math
.
Summary: In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space $X$ is $z$-embedded in every larger Tychonoff space if and only if $X$ is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings. (English)
Keyword: absolute $z$-embedding
Keyword: absolute $C$-embedding
Keyword: absolute $C^*$-embedding
Keyword: absolute embeddings
Keyword: almost compact
Keyword: Lindelöf
Keyword: compact
Keyword: pseudocompact
MSC: 54C25
MSC: 54C45
MSC: 54D20
idZBL: Zbl 1090.54009
idMR: MR1903317
.
Date available: 2009-01-08T19:20:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119310
.
Reference: [1] Alò R.A., Shapiro H.L.: Normal Topological Spaces.Cambridge University Press, Cambridge, 1974. MR 0390985
Reference: [2] Arhangel'skii A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. Zbl 0848.54016, MR 1397067
Reference: [3] Arhangel'skii A.V., Tartir J.: A characterization of compactness by relative separation property.Questions Answers Gen. Topology 14 (1996), 49-52. MR 1384052
Reference: [4] Aull C.E.: Some embeddings related to $C^*$-embeddings.J. Austral. Math. Soc. (Series A) 44 (1988), 88-104. Zbl 0653.54015, MR 0914406
Reference: [5] Aull C.E.: On well-embedding.General Topology and Applications (Middletown, CT, 1988), pp.1-5; Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990. Zbl 0721.54009, MR 1057621
Reference: [6] Bella A., Yaschenko I.V.: Lindelöf property and absolute embeddings.Proc. Amer. Math. Soc. 127 (1999), 907-913. Zbl 0907.54003, MR 1469399
Reference: [7] Blair R.L.: On $\upsilon$-embedded sets in topological spaces.TOPO 72 - General Topology and its Applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), pp.46-79; Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974. MR 0358677
Reference: [8] Blair R.L., Hager A.W.: Extensions of zero-sets and of real-valued functions.Math. Z. 136 (1974), 41-52. Zbl 0264.54011, MR 0385793
Reference: [9] Doss R.: On uniform spaces with a unique structure.Amer. J. Math. 71 (1949), 19-23. Zbl 0032.12202, MR 0029153
Reference: [10] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [11] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [12] Hager A.W., Johnson D.G.: A note on certain subalgebras of $C(X)$.Canad. J. Math. 20 (1968), 389-393. MR 0222647
Reference: [13] Henriksen M., Johnson D.G.: On the structure of a class of archimedian lattice-ordered algebras.Fund. Math. 50 (1961), 73-94. MR 0133698
Reference: [14] Hewitt E.: A note on extensions of continuous functions.An. Acad. Brasil. Ci. 21 (1949), 175-179. MR 0031711
Reference: [15] Noble N.: $C$-embedded subsets of products.Proc. Amer. Math. Soc. 31 (1972), 613-614. Zbl 0231.54011, MR 0284978
Reference: [16] Smirnov Y.: Mappings of systems of open sets (in Russian).Mat. Sb. 31 (1952), 152-166. MR 0050263
Reference: [17] Terada T.: Note on $z$-, $C^*$-, and $C$-embedding.Sci. Rep. Tokyo Kyoiku Daigaku Sect. A. 13 (1975), 129-132. Zbl 0333.54008, MR 0391005
Reference: [18] Yajima Y.: Characterizations of paracompactness and Lindelöfness by separation property.preprint. MR 1948123
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-1_16.pdf 188.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo