Previous |  Up |  Next


homogeneous Riemannian spaces; homogeneous geodesics; flag manifolds
A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics.
[A] Alekseevsky D.V.: Flag manifolds. in: Sbornik Radova, vol.6, Beograd, 1997, 3-35. MR 1491979 | Zbl 1148.53038
[A-P] Alekseevsky D.V., Perelomov A.M.: Invariant Kähler-Einstein metrics on compact homogeneous spaces. Functional Anal. Appl. 20 (1986), 171-182. MR 0868557
[Du1] Dušek Z.: Structure of geodesics in a $13$-dimensional group of Heisenberg type. Proc. Coll. Diff. Geom. in Debrecen (2001), pp. 95-103. MR 1859291
[Du2] Dušek Z.: Explicit geodesic graphs on some $H$-type groups. preprint. MR 1972426
[Go] Gordon C.S.: Homogeneous manifolds whose geodesics are orbits. in: Topics in Geometry, in Memory of Joseph D'Atri, Birkhäuser, Basel, 1996, pp.155-174. MR 1390313
[Ka] Kaplan A.: On the geometry of groups of Heisenberg type Bull. London Math. Soc. 15 (1983), 35-42. MR 0686346
[Kost] Kostant B.: Holonomy and Lie algebra of motions in Riemannian manifolds. Trans. Amer. Math. Soc. 80 (1955), 520-542. MR 0084825
[Ko-Ni] Kowalski O., Ž. Nikčević S.: On geodesic graphs of Riemannian g.o. spaces. Arch. Math. 73 (1999), 223-234. MR 1705019
[Ko-Ni-Vl] Kowalski O., Ž. Nikčević S., Vlášek Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - examples. in: Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), pp.104-112, World Sci. Publishing, River Edge, NJ, 2000. MR 1801906
[Ko-Va] Kowalski O., Vanhecke L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5 (1991), 189-246. MR 1110676 | Zbl 0731.53046
[Ko-Sz] Kowalski O., Szenthe J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209-214; Erratum: 84 (2001), 331-332. MR 1772203 | Zbl 0980.53061
[Vin] Vinberg E.B.: Invariant linear connections in a homogeneous manifold. Trudy MMO 9 (1960), 191-210. MR 0176418
Partner of
EuDML logo