Title:
|
Metrics with homogeneous geodesics on flag manifolds (English) |
Author:
|
Alekseevsky, Dmitri |
Author:
|
Arvanitoyeorgos, Andreas |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
189-199 |
. |
Category:
|
math |
. |
Summary:
|
A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics. (English) |
Keyword:
|
homogeneous Riemannian spaces |
Keyword:
|
homogeneous geodesics |
Keyword:
|
flag manifolds |
MSC:
|
03E25 |
MSC:
|
14M15 |
MSC:
|
53C22 |
MSC:
|
53C30 |
idZBL:
|
Zbl 1090.53044 |
idMR:
|
MR1922121 |
. |
Date available:
|
2009-01-08T19:21:05Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119313 |
. |
Reference:
|
[A] Alekseevsky D.V.: Flag manifolds.in: Sbornik Radova, vol.6, Beograd, 1997, 3-35. Zbl 1148.53038, MR 1491979 |
Reference:
|
[A-P] Alekseevsky D.V., Perelomov A.M.: Invariant Kähler-Einstein metrics on compact homogeneous spaces.Functional Anal. Appl. 20 (1986), 171-182. MR 0868557 |
Reference:
|
[Du1] Dušek Z.: Structure of geodesics in a $13$-dimensional group of Heisenberg type.Proc. Coll. Diff. Geom. in Debrecen (2001), pp. 95-103. MR 1859291 |
Reference:
|
[Du2] Dušek Z.: Explicit geodesic graphs on some $H$-type groups.preprint. MR 1972426 |
Reference:
|
[Go] Gordon C.S.: Homogeneous manifolds whose geodesics are orbits.in: Topics in Geometry, in Memory of Joseph D'Atri, Birkhäuser, Basel, 1996, pp.155-174. MR 1390313 |
Reference:
|
[Ka] Kaplan A.: On the geometry of groups of Heisenberg type Bull. London Math. Soc..15 (1983), 35-42. MR 0686346 |
Reference:
|
[Kost] Kostant B.: Holonomy and Lie algebra of motions in Riemannian manifolds.Trans. Amer. Math. Soc. 80 (1955), 520-542. MR 0084825 |
Reference:
|
[Ko-Ni] Kowalski O., Ž. Nikčević S.: On geodesic graphs of Riemannian g.o. spaces.Arch. Math. 73 (1999), 223-234. MR 1705019 |
Reference:
|
[Ko-Ni-Vl] Kowalski O., Ž. Nikčević S., Vlášek Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - examples.in: Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), pp.104-112, World Sci. Publishing, River Edge, NJ, 2000. MR 1801906 |
Reference:
|
[Ko-Va] Kowalski O., Vanhecke L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Mat. Ital. B (7) 5 (1991), 189-246. Zbl 0731.53046, MR 1110676 |
Reference:
|
[Ko-Sz] Kowalski O., Szenthe J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds.Geom. Dedicata 81 (2000), 209-214; Erratum: 84 (2001), 331-332. Zbl 0980.53061, MR 1772203 |
Reference:
|
[Vin] Vinberg E.B.: Invariant linear connections in a homogeneous manifold.Trudy MMO 9 (1960), 191-210. MR 0176418 |
. |