Previous |  Up |  Next

Article

Title: Metrics with homogeneous geodesics on flag manifolds (English)
Author: Alekseevsky, Dmitri
Author: Arvanitoyeorgos, Andreas
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 189-199
.
Category: math
.
Summary: A geodesic of a homogeneous Riemannian manifold $(M=G/K, g)$ is called homogeneous if it is an orbit of an one-parameter subgroup of $G$. In the case when $M=G/H$ is a naturally reductive space, that is the $G$-invariant metric $g$ is defined by some non degenerate biinvariant symmetric bilinear form $B$, all geodesics of $M$ are homogeneous. We consider the case when $M=G/K$ is a flag manifold, i.e\. an adjoint orbit of a compact semisimple Lie group $G$, and we give a simple necessary condition that $M$ admits a non-naturally reductive invariant metric with homogeneous geodesics. Using this, we enumerate flag manifolds of a classical Lie group $G$ which may admit a non-naturally reductive $G$-invariant metric with homogeneous geodesics. (English)
Keyword: homogeneous Riemannian spaces
Keyword: homogeneous geodesics
Keyword: flag manifolds
MSC: 03E25
MSC: 14M15
MSC: 53C22
MSC: 53C30
idZBL: Zbl 1090.53044
idMR: MR1922121
.
Date available: 2009-01-08T19:21:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119313
.
Reference: [A] Alekseevsky D.V.: Flag manifolds.in: Sbornik Radova, vol.6, Beograd, 1997, 3-35. Zbl 1148.53038, MR 1491979
Reference: [A-P] Alekseevsky D.V., Perelomov A.M.: Invariant Kähler-Einstein metrics on compact homogeneous spaces.Functional Anal. Appl. 20 (1986), 171-182. MR 0868557
Reference: [Du1] Dušek Z.: Structure of geodesics in a $13$-dimensional group of Heisenberg type.Proc. Coll. Diff. Geom. in Debrecen (2001), pp. 95-103. MR 1859291
Reference: [Du2] Dušek Z.: Explicit geodesic graphs on some $H$-type groups.preprint. MR 1972426
Reference: [Go] Gordon C.S.: Homogeneous manifolds whose geodesics are orbits.in: Topics in Geometry, in Memory of Joseph D'Atri, Birkhäuser, Basel, 1996, pp.155-174. MR 1390313
Reference: [Ka] Kaplan A.: On the geometry of groups of Heisenberg type Bull. London Math. Soc..15 (1983), 35-42. MR 0686346
Reference: [Kost] Kostant B.: Holonomy and Lie algebra of motions in Riemannian manifolds.Trans. Amer. Math. Soc. 80 (1955), 520-542. MR 0084825
Reference: [Ko-Ni] Kowalski O., Ž. Nikčević S.: On geodesic graphs of Riemannian g.o. spaces.Arch. Math. 73 (1999), 223-234. MR 1705019
Reference: [Ko-Ni-Vl] Kowalski O., Ž. Nikčević S., Vlášek Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - examples.in: Geometry and Topology of Submanifolds, X (Beijing/Berlin, 1999), pp.104-112, World Sci. Publishing, River Edge, NJ, 2000. MR 1801906
Reference: [Ko-Va] Kowalski O., Vanhecke L.: Riemannian manifolds with homogeneous geodesics.Boll. Un. Mat. Ital. B (7) 5 (1991), 189-246. Zbl 0731.53046, MR 1110676
Reference: [Ko-Sz] Kowalski O., Szenthe J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds.Geom. Dedicata 81 (2000), 209-214; Erratum: 84 (2001), 331-332. Zbl 0980.53061, MR 1772203
Reference: [Vin] Vinberg E.B.: Invariant linear connections in a homogeneous manifold.Trudy MMO 9 (1960), 191-210. MR 0176418
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_1.pdf 237.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo