Title:
|
Stability of the geodesic flow for the energy (English) |
Author:
|
Boeckx, E. |
Author:
|
González-Dávila, J. C. |
Author:
|
Vanhecke, L. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
201-213 |
. |
Category:
|
math |
. |
Summary:
|
We study the stability of the geodesic flow $\xi$ as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space. (English) |
Keyword:
|
geodesic flow |
Keyword:
|
two-point homogeneous spaces |
Keyword:
|
harmonic maps |
Keyword:
|
stability |
Keyword:
|
energy functional |
MSC:
|
53C20 |
MSC:
|
53C22 |
MSC:
|
53C30 |
MSC:
|
58E20 |
idZBL:
|
Zbl 1090.53035 |
idMR:
|
MR1922122 |
. |
Date available:
|
2009-01-08T19:21:12Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119314 |
. |
Reference:
|
[1] Boeckx E., Vanhecke L.: Characteristic reflections on unit tangent sphere bundles.Houston J. Math. 23 (1997), 427-448. Zbl 0897.53010, MR 1690045 |
Reference:
|
[2] Boeckx E., Vanhecke L.: Harmonic and minimal vector fields on tangent and unit tangent bundles.Differential Geom. Appl. 13 (2000), 77-93. Zbl 0973.53053, MR 1775222 |
Reference:
|
[3] Borel A.: Compact Clifford-Klein forms of symmetric spaces.Topology 2 (1963), 111-122. Zbl 0116.38603, MR 0146301 |
Reference:
|
[4] Brito F.: Total bending of flows with mean curvature correction.Differential Geom. Appl. 12 (2000), 157-163. Zbl 0995.53023, MR 1758847 |
Reference:
|
[5] Chen B.Y., Vanhecke L.: Differential geometry of geodesic spheres.J. Reine Angew. Math. 25 (1981), 28-67. Zbl 0503.53013, MR 0618545 |
Reference:
|
[6] González-Dávila J.C., Vanhecke L.: Energy and volume of unit vector fields on three-dimensional Riemannian manifolds.Differential Geom. Appl., to appear. MR 1900746 |
Reference:
|
[7] Gray A., Vanhecke L.: Riemannian geometry as determined by the volumes of small geodesic balls.Acta Math. 142 (1979), 157-198. Zbl 0428.53017, MR 0521460 |
Reference:
|
[8] Higuchi A., Kay B.S., Wood C.M.: The energy of unit vector fields on the $3$-sphere.J. Geom. Phys. 37 (2002), 137-155. MR 1807086 |
Reference:
|
[9] Milnor J.: Curvature of left invariant metrics on Lie groups.Adv. in Math. 21 (1976), 293-329. MR 0425012 |
Reference:
|
[10] Tricerri F., Vanhecke L.: Homogeneous Structures on Riemannian Manifolds.Lecture Note Series London Math. Soc. 83, Cambridge Univ. Press, 1983. Zbl 0641.53047, MR 0712664 |
Reference:
|
[11] Watanabe Y.: Integral inequalities in compact orientable manifolds, Riemannian or Kählerian.Kōdai Math. Sem. Rep. 20 (1968), 264-271. MR 0248702 |
Reference:
|
[12] Wiegmink G.: Total bending of vector fields on Riemannian manifolds.Math. Ann. 303 (1995), 325-344. Zbl 0834.53034, MR 1348803 |
Reference:
|
[13] Wiegmink G.: Total bending of vector fields on the sphere $S^3$.Differential Geom. Appl. 6 (1996), 219-236. MR 1408308 |
Reference:
|
[14] Wood C.M.: On the energy of a unit vector field.Geom. Dedicata 64 (1997), 319-330. Zbl 0878.58017, MR 1440565 |
. |