Previous |  Up |  Next

Article

Title: Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces (English)
Author: Rodionov, Eugene D.
Author: Slavskii, Viktor V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 271-282
.
Category: math
.
Summary: In this paper we investigate one-dimensional sectional curvatures of Riemannian manifolds, conformal deformations of the Riemannian metrics and the structure of locally conformally homogeneous Riemannian manifolds. We prove that the nonnegativity of the one-dimensional sectional curvature of a homogeneous Riemannian space attracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with the help of the theorems O. Kowalski-S. Nikčevi'c [K-N], D. Alekseevsky-B. Kimelfeld [A-K]. The criterion for existence of the left-invariant Riemannian metrics of positive one-dimensional sectional curvature on Lie groups is presented. Classification of the conformally deformed homogeneous Riemannian metrics of positive sectional curvature on homogeneous spaces is obtained. The notion of locally conformally homogeneous Riemannian spaces is introduced. It is proved that each such space is either conformally flat or conformally equivalent to a locally homogeneous Riemannian space. (English)
Keyword: conformal deformations
Keyword: Riemannian metrics
Keyword: homogeneous Riemannian \break spaces
MSC: 53C20
MSC: 53C30
idZBL: Zbl 1090.53039
idMR: MR1922127
.
Date available: 2009-01-08T19:21:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119319
.
Reference: [A-K] Alekseevsky D.V., Kimelfeld B.N.: The structure of homogeneous Riemannian spaces with zero Ricci curvature.Functional Anal. Appl. 9 (2), 5-11 (1975). MR 0402650
Reference: [Berest] Berestovsky V.N.: Homogeneous Riemannian manifolds of positive Ricci curvature.Mat. Zametki 58 (3), 334-340 (1995). MR 1368542
Reference: [Berger] Berger M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive.Ann. Scuola Norm. Sup. Pisa 15 179-246 (1961). Zbl 0101.14201, MR 0133083
Reference: [B] Besse A.L.: Einstein Manifolds.Springer-Verlag, Berlin, 1987. Zbl 1147.53001, MR 0867684
Reference: [C] Collinson C.D.: A comment on the integrability conditions of the conformal Killing equation.Gen. Relativity Gravitation 21 9 979-980 (1989). Zbl 0675.53025, MR 1008832
Reference: [E] Ehrlich P.: Conformal deformations and extremal paths in the space of Riemannian metrics.Math. Nachr. 72 137-140 (1976). MR 0420703
Reference: [K] Kowalski O.: Counter-example to the ``second Singer's theorem''.Ann. Global Anal. Geom. 8 2 211-214 (1990). Zbl 0736.53047, MR 1088512
Reference: [K-N] Kowalski O., Nikčević S.Ž: Eigenvalues of locally homogeneous riemannian $3$-manifolds.Geom. Dedicata 62 65-72 (1996). MR 1400981
Reference: [M] Milnor J.: Curvature of left invariant metric on Lie groups.Adv. Math. 21 293-329 (1976). MR 0425012
Reference: [Resh] Reshetnyak Yu.G.: Stability theorems in geometry and analysis.Mathematical Institute of the SB of RAS, Novosibirsk, 1996. Zbl 0848.30013, MR 1462616
Reference: [R] Rodionov E.D.: Homogeneous Riemannian Z-manifolds.PhD. dissertation, Mathematical Institute of the SB of RAS, 1982. Zbl 0472.53051, MR 0610778
Reference: [RS1] Rodionov E.D, Slavskii V.V.: Conformal deformations of the Riemannian metrics with sections of zero curvature on a compact manifold.Rep. of Acad. Sci. 373 (3), (2000), 300-303. MR 1789653
Reference: [RS2] Rodionov E.D., Slavskii V.V.: Locally conformally homogeneous Riemannian spaces.Journal of ASU 1 (19), (2001), 39-42.
Reference: [T] Tricerri F.: Locally homogeneous Riemannian manifolds.Rend. Semin. Mat. Torino 50 4 411-426 (1992). Zbl 0793.53056, MR 1261452
Reference: [T-V] Tricerri F., Vanhecke L.: Homogeneous structures on Riemannian manifolds.London Mathematical Society Lecture Note Series, 83; Cambridge etc.: Cambridge University Press, VI, 125 pp. Zbl 0641.53047, MR 0712664
Reference: [W] Wallach N.: Compact homogeneous Riemannian manifolds with strictly positive curvature.Ann. of Math. 96 277-295 (1972). Zbl 0261.53033, MR 0307122
Reference: [Y] Yano K.: The Theory of Lie Derivatives and its Applications.North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957. Zbl 0077.15802, MR 0088769
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_7.pdf 235.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo