Previous |  Up |  Next

Article

Title: Curvature homogeneous spaces whose curvature tensors have large symmetries (English)
Author: Tsukada, Kazumi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 2
Year: 2002
Pages: 283-297
.
Category: math
.
Summary: We study curvature homogeneous spaces or locally homogeneous spaces whose curvature tensors are invariant by the action of ``large" Lie subalgebras $\frak{h}$ of $\frak{so}(n)$. In this paper we deal with the cases of $\frak{h}=\frak{so}(r) \oplus \frak{so}(n-r)$ $(2\leq r \leq n-r)$, $\frak{so}(n-2)$, and the Lie algebras of Lie groups acting transitively on spheres, and classify such curvature homogeneous spaces or locally homogeneous spaces. (English)
Keyword: locally homogeneous spaces
Keyword: curvature homogeneous spaces
Keyword: totally geodesic foliations
MSC: 53B20
MSC: 53C30
idZBL: Zbl 1090.53050
idMR: MR1922128
.
Date available: 2009-01-08T19:22:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119320
.
Reference: [1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian manifolds of conullity two.World Scientific, 1996. Zbl 0904.53006, MR 1462887
Reference: [2] Borel A.: Some remarks about Lie groups transitive on spheres and tori.Bull. Amer. Math. Soc. 55 (1949), 580-587. Zbl 0034.01603, MR 0029915
Reference: [3] Borel A., De Siebenthal J.: Les sous-groupes fermés de rang maximum des groupes de Lie clos.Comment. Math. Helv. 23 (1949), 200-221. Zbl 0034.30701, MR 0032659
Reference: [4] Chi Q.S.: Curvature characterization and classification of rank-one symmetric spaces.Pacific J. Math. 150 (1991), 31-42. Zbl 0742.53018, MR 1120711
Reference: [5] Ferus D.: Totally geodesic foliations.Math. Ann. 188 (1970), 313-316. Zbl 0194.52804, MR 0271872
Reference: [6] Gilkey P., Swann A., Vanhecke L.: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator.Quart. J. Math. Oxford 46 (1995), 299-320. Zbl 0848.53023, MR 1348819
Reference: [7] Iwahori N.: Some remarks on tensor invariants $O(n)$, $U(n)$, $Sp(n)$.J. Math. Soc. Japan 10 (1958), 145-160. MR 0124410
Reference: [8] Kiyota Y., Tsukada K.: Curvature tensors and Singer invariants of four-dimensional homogeneous spaces.Comment. Math. Univ. Carolinae 40 (1999), 723-733. Zbl 1020.53032, MR 1756548
Reference: [9] Montgomery D., Samelson H.: Transformation groups of spheres.Ann. Math. 44 (1943), 454-470. Zbl 0063.04077, MR 0008817
Reference: [10] Nicolodi L., Tricerri F.: On two theorems of I.M. Singer about homogeneous spaces.Ann. Global Anal. Geom. 8 (1990), 193-209. Zbl 0676.53058, MR 1088511
Reference: [11] Obata M.: On subgroups of the orthogonal group.Trans. Amer. Math. Soc. 87 (1958), 347-358. Zbl 0080.02204, MR 0095205
Reference: [12] Podestà F., Tricerri F.: Riemannian manifolds with special curvature tensors.Rend. Istit. Mat. Univ. Trieste 26 (1994), 95-101. MR 1363915
Reference: [13] Singer I.M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685-697. Zbl 0171.42503, MR 0131248
Reference: [14] Tricerri F., Vanhecke L.: Curvature tensors on almost Hermitian manifolds.Trans. Amer. Math. Soc. 267 (1981), 365-398. Zbl 0484.53014, MR 0626479
Reference: [15] Tsukada K.: Curvature homogeneous hypersurfaces immersed in a real space form.Tôhoku Math. J. 40 (1988), 221-244. Zbl 0651.53037, MR 0943821
Reference: [16] Tsukada K.: The Singer invariant of homogeneous spaces.Proceedings of the Fourth International Workshop on Differential Geometry, Transilvania University Press, 1999, pp.274-280. Zbl 1075.53520
Reference: [17] Wang M., Ziller W.: Symmetric spaces and strongly isotropy irreducible spaces.Math. Ann. 296 (1993), 285-326. Zbl 0804.53075, MR 1219904
Reference: [18] Ziller W.: Homogeneous Einstein metrics on spheres and projective spaces.Math. Ann. 259 (1982), 351-358. Zbl 0469.53043, MR 0661203
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-2_8.pdf 272.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo