# Article

Full entry | PDF   (0.2 MB)
Keywords:
axiom of choice; axiom of countable choice; Lindelöf space; compact space; product; sum
Summary:
The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\Bbb R)$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\Bbb R)$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\Bbb R)$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\Bbb R)$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\Bbb R)$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\Bbb R)$ fails.
References:
[1] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces. Topology Appl. 85 (1998), 153-164. MR 1617460 | Zbl 0922.03068
[2] Börger R.: On powers of a Lindelöf space. preprint, November 2001.
[3] Brunner N.: $\sigma$-kompakte Räume. Manuscripta Math. 38 (1982), 375-379. MR 0667922 | Zbl 0504.54004
[4] Brunner N.: Lindelöf Räume und Auswahlaxiom. Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. MR 0728812
[5] Brunner N.: Spaces of Urelements, II. Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. MR 0904626 | Zbl 0668.54014
[6] Church A.: Alternatives to Zermelo's assumption. Trans. Amer. Math. Soc. 29 (1927), 178-208. MR 1501383
[7] Engelking R.: General Topology. Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[8] Feferman S., Levy A.: Independence results in set theory by Cohen's method. Notices Amer. Math. Soc. 10 (1963), 593.
[9] Gitik M.: All uncountable cardinals can be singular. Israel J. Math. 35 (1980), 61-88. MR 0576462 | Zbl 0439.03036
[10] Good C., Tree I.J.: Continuing horrors of topology without choice. Topology Appl. 63 (1995), 79-90. MR 1328621 | Zbl 0822.54001
[11] Gutierres G.: Sequential topological conditions without AC. preprint, 2001.
[12] Herrlich H.: Compactness and the axiom of choice. Appl. Categ. Structures 3 (1995), 1-15. MR 1393958
[13] Herrlich H., Keremedis K.: On countable products of finite Hausdorff spaces. Math. Logic Quart. 46 (2000), 537-542. MR 1791548 | Zbl 0959.03033
[14] Herrlich H., Strecker G.E.: When is $\Bbb N$ Lindelöf?. Comment. Math. Univ. Carolinae 38 (1997), 553-556. MR 1485075 | Zbl 0938.54008
[15] Howard P., Rubin J.E.: Consequences of the Axiom of Choice. AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. MR 1637107 | Zbl 0947.03001
[16] Jech T.J.: The Axiom of Choice. North-Holland, Amsterdam, 1973. MR 0396271 | Zbl 0259.02052
[17] Kelley J.: The Tychonoff product theorem implies the axiom of choice. Fund. Math. 37 (1950), 75-76. MR 0039982 | Zbl 0039.28202
[18] Keremedis K.: Disasters in topology without the axiom of choice. Arch. Math. Logic, 2000, to appear. MR 1867681 | Zbl 1027.03040
[19] Keremedis K.: Countable disjoint unions in topology and some weak forms of the axiom of choice. Arch. Math. Logic, submitted.
[20] Keremedis K., Tachtsis E.: On Lindelöf metric spaces and weak forms of the axiom of choice. Math. Logic Quart. 46 (2000), 35-44. MR 1736648 | Zbl 0952.03060
[21] Lindelöf E.: Sur quelques points de la théorie des ensembles. C.R. Acad. Paris 137 (1903), 697-700.
[22] Mycielski J., Steinhaus H.: A mathematical axiom contradicting the axiom of choice. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. MR 0140430 | Zbl 0106.00804
[23] Rhineghost Y.T.: The naturals are Lindelöf iff Ascoli holds. Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. MR 1827669 | Zbl 0983.03039
[24] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[25] Sageev G.: An independence result concerning the axiom of choice. Annals Math. Logic 8 (1975), 1-184. MR 0366668 | Zbl 0306.02060
[26] Specker E.: Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom). Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. MR 0099297 | Zbl 0079.07605
[27] van Douwen E.K.: Horrors of topology without AC: a nonnormal orderable space. Proc. Amer. Math. Soc. 95 (1985), 101-105. MR 0796455 | Zbl 0574.03039

Partner of