Title:
|
Products of Lindelöf $T_2$-spaces are Lindelöf – in some models of ZF (English) |
Author:
|
Herrlich, Horst |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
319-333 |
. |
Category:
|
math |
. |
Summary:
|
The stability of the Lindelöf property under the formation of products and of sums is investigated in ZF (= Zermelo-Fraenkel set theory without AC, the axiom of choice). It is • not surprising that countable summability of the Lindelöf property requires some weak choice principle, • highly surprising, however, that productivity of the Lindelöf property is guaranteed by a drastic failure of AC, • amusing that finite summability of the Lindelöf property takes place if either some weak choice principle holds or if AC fails drastically. Main results: 1. Lindelöf = compact for $T_1$-spaces iff $\text{\bf CC}(\Bbb R)$, the axiom of countable choice for subsets of the reals, fails. 2. Lindelöf $T_1$-spaces are finitely productive iff $\text{\bf CC}(\Bbb R)$ fails. 3. Lindelöf $T_2$-spaces are productive iff $\text{\bf CC}(\Bbb R)$ fails and $\text{\bf BPI}$, the Boolean prime ideal theorem, holds. 4. Arbitrary products and countable sums of compact $T_1$-spaces are Lindelöf iff $\text{\bf AC}$ holds. 5. Lindelöf spaces are countably summable iff $\text{\bf CC}$, the axiom of countable choice, holds. 6. Lindelöf spaces are finitely summable iff either $\text{\bf CC}$ holds or $\text{\bf CC}(\Bbb R)$ fails. 7. Lindelöf $T_2$-spaces are $T_3$ spaces iff $\text{\bf CC}(\Bbb R)$ fails. 8. Totally disconnected Lindelöf $T_2$-spaces are zerodimensional iff $\text{\bf CC}(\Bbb R)$ fails. (English) |
Keyword:
|
axiom of choice |
Keyword:
|
axiom of countable choice |
Keyword:
|
Lindelöf space |
Keyword:
|
compact space |
Keyword:
|
product |
Keyword:
|
sum |
MSC:
|
03E25 |
MSC:
|
54A35 |
MSC:
|
54B10 |
MSC:
|
54D20 |
MSC:
|
54D30 |
idZBL:
|
Zbl 1072.03029 |
idMR:
|
MR1922130 |
. |
Date available:
|
2009-01-08T19:22:19Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119322 |
. |
Reference:
|
[1] Bentley H.L., Herrlich H.: Countable choice and pseudometric spaces.Topology Appl. 85 (1998), 153-164. Zbl 0922.03068, MR 1617460 |
Reference:
|
[2] Börger R.: On powers of a Lindelöf space.preprint, November 2001. |
Reference:
|
[3] Brunner N.: $\sigma$-kompakte Räume.Manuscripta Math. 38 (1982), 375-379. Zbl 0504.54004, MR 0667922 |
Reference:
|
[4] Brunner N.: Lindelöf Räume und Auswahlaxiom.Anz. Österreich. Akad. der Wiss. Math. Nat. Kl. 119 (1982), 161-165. MR 0728812 |
Reference:
|
[5] Brunner N.: Spaces of Urelements, II.Rend. Sem. Mat. Univ. Padova 77 (1987), 305-315. Zbl 0668.54014, MR 0904626 |
Reference:
|
[6] Church A.: Alternatives to Zermelo's assumption.Trans. Amer. Math. Soc. 29 (1927), 178-208. MR 1501383 |
Reference:
|
[7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[8] Feferman S., Levy A.: Independence results in set theory by Cohen's method.Notices Amer. Math. Soc. 10 (1963), 593. |
Reference:
|
[9] Gitik M.: All uncountable cardinals can be singular.Israel J. Math. 35 (1980), 61-88. Zbl 0439.03036, MR 0576462 |
Reference:
|
[10] Good C., Tree I.J.: Continuing horrors of topology without choice.Topology Appl. 63 (1995), 79-90. Zbl 0822.54001, MR 1328621 |
Reference:
|
[11] Gutierres G.: Sequential topological conditions without AC.preprint, 2001. |
Reference:
|
[12] Herrlich H.: Compactness and the axiom of choice.Appl. Categ. Structures 3 (1995), 1-15. MR 1393958 |
Reference:
|
[13] Herrlich H., Keremedis K.: On countable products of finite Hausdorff spaces.Math. Logic Quart. 46 (2000), 537-542. Zbl 0959.03033, MR 1791548 |
Reference:
|
[14] Herrlich H., Strecker G.E.: When is $\Bbb N$ Lindelöf?.Comment. Math. Univ. Carolinae 38 (1997), 553-556. Zbl 0938.54008, MR 1485075 |
Reference:
|
[15] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.AMS Math. Surveys and Monographs 59 AMS, Providence, RI, 1998. Zbl 0947.03001, MR 1637107 |
Reference:
|
[16] Jech T.J.: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[17] Kelley J.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982 |
Reference:
|
[18] Keremedis K.: Disasters in topology without the axiom of choice.Arch. Math. Logic, 2000, to appear. Zbl 1027.03040, MR 1867681 |
Reference:
|
[19] Keremedis K.: Countable disjoint unions in topology and some weak forms of the axiom of choice.Arch. Math. Logic, submitted. |
Reference:
|
[20] Keremedis K., Tachtsis E.: On Lindelöf metric spaces and weak forms of the axiom of choice.Math. Logic Quart. 46 (2000), 35-44. Zbl 0952.03060, MR 1736648 |
Reference:
|
[21] Lindelöf E.: Sur quelques points de la théorie des ensembles.C.R. Acad. Paris 137 (1903), 697-700. |
Reference:
|
[22] Mycielski J., Steinhaus H.: A mathematical axiom contradicting the axiom of choice.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 10 (1962), 1-3. Zbl 0106.00804, MR 0140430 |
Reference:
|
[23] Rhineghost Y.T.: The naturals are Lindelöf iff Ascoli holds.Categorical Perspectives (eds. J. Koslowski and A. Melton), Birkhäuser, 2001. Zbl 0983.03039, MR 1827669 |
Reference:
|
[24] Rubin H., Scott D.: Some topological theorems equivalent to the Boolean prime ideal theorem.Bull. Amer. Math. Soc. 60 (1954), 389. |
Reference:
|
[25] Sageev G.: An independence result concerning the axiom of choice.Annals Math. Logic 8 (1975), 1-184. Zbl 0306.02060, MR 0366668 |
Reference:
|
[26] Specker E.: Zur Axiomatik der Mengenlehre (Fundierungs- und Auswahlaxiom).Z. Math. Logik Grundlagen Math. 3 (1957), 173-210. Zbl 0079.07605, MR 0099297 |
Reference:
|
[27] van Douwen E.K.: Horrors of topology without AC: a nonnormal orderable space.Proc. Amer. Math. Soc. 95 (1985), 101-105. Zbl 0574.03039, MR 0796455 |
. |