Previous |  Up |  Next

Article

Title: Annihilators and deductive systems in commutative Hilbert algebras (English)
Author: Chajda, I.
Author: Halaš, R.
Author: Jun, Y. B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 407-417
.
Category: math
.
Summary: The properties of deductive systems in Hilbert algebras are treated. If a Hilbert algebra $H$ considered as an ordered set is an upper semilattice then prime deductive systems coincide with meet-irreducible elements of the lattice $\operatorname{Ded} H$ of all deductive systems on $H$ and every maximal deductive system is prime. Complements and relative complements of $\operatorname{Ded} H$ are characterized as the so called annihilators in $H$. (English)
Keyword: (commutative) Hilbert algebra
Keyword: deductive system (generated by a set)
Keyword: annihilator
MSC: 03B22
MSC: 03G10
MSC: 03G25
MSC: 06A11
idZBL: Zbl 1070.03043
idMR: MR1920517
.
Date available: 2009-01-08T19:23:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119331
.
Reference: [1] Balbes R., Dwinger P.: Distributive Lattices.University of Missouri Press, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] Busneag D.: A note on deductive systems of a Hilbert algebra.Kobe J. Math. 2 (1985), 29-35. Zbl 0584.06005, MR 0811800
Reference: [3] Busneag D.: Hilbert algebras of fractions and maximal Hilbert algebras of quotients.Kobe J. Math. 5 (1988), 161-172. Zbl 0676.06018, MR 0990817
Reference: [4] Busneag D.: Hertz algebras of fractions and maximal Hertz algebras of quotients.Math. Japon. 39 (1993), 461-469. MR 1278859
Reference: [5] Chajda I.: The lattice of deductive systems on Hilbert algebras.Southeast Asian Bull. Math., to appear. Zbl 1010.03054, MR 2046584
Reference: [6] Chajda I., Halaš R.: Congruences and ideals in Hilbert algebras.Kyungpook Math. J. 39 (1999), 429-432. MR 1728116
Reference: [7] Chajda I., Halaš R.: Stabilizers of Hilbert algebras.Multiple Valued Logic, to appear.
Reference: [8] Chajda I., Halaš R., Zednik J.: Filters and annihilators in implication algebras.Acta Univ. Palack. Olomuc, Fac. Rerum Natur. Math. 37 (1998), 141-145. MR 1690472
Reference: [9] Diego A.: Sur les algébras de Hilbert.Ed. Hermann, Colléction de Logique Math. Serie A 21 (1966), 1-52.
Reference: [10] Hong S.M., Jun Y.B.: On a special class of Hilbert algebras.Algebra Colloq. 3:3 (1996), 285-288. Zbl 0857.03040, MR 1412660
Reference: [11] Hong S.M., Jun Y.B.: On deductive systems of Hilbert algebras.Comm. Korean Math. Soc. 11:3 (1996), 595-600. Zbl 0946.03079, MR 1432264
Reference: [12] Jun Y.B.: Deductive systems of Hilbert algebras.Math. Japon. 43 (1996), 51-54. Zbl 0946.03079, MR 1373981
Reference: [13] Jun Y.B.: Commutative Hilbert algebras.Soochow J. Math. 22:4 (1996), 477-484. Zbl 0864.03042, MR 1426553
Reference: [14] Jun Y.B., Nam J.W., Hong S.M.: A note on Hilbert algebras.Pusan Kyongnam Math. J. (presently, East Asian Math. J.) 10 (1994), 279-285.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_2.pdf 211.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo