Title:
|
Annihilators and deductive systems in commutative Hilbert algebras (English) |
Author:
|
Chajda, I. |
Author:
|
Halaš, R. |
Author:
|
Jun, Y. B. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
407-417 |
. |
Category:
|
math |
. |
Summary:
|
The properties of deductive systems in Hilbert algebras are treated. If a Hilbert algebra $H$ considered as an ordered set is an upper semilattice then prime deductive systems coincide with meet-irreducible elements of the lattice $\operatorname{Ded} H$ of all deductive systems on $H$ and every maximal deductive system is prime. Complements and relative complements of $\operatorname{Ded} H$ are characterized as the so called annihilators in $H$. (English) |
Keyword:
|
(commutative) Hilbert algebra |
Keyword:
|
deductive system (generated by a set) |
Keyword:
|
annihilator |
MSC:
|
03B22 |
MSC:
|
03G10 |
MSC:
|
03G25 |
MSC:
|
06A11 |
idZBL:
|
Zbl 1070.03043 |
idMR:
|
MR1920517 |
. |
Date available:
|
2009-01-08T19:23:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119331 |
. |
Reference:
|
[1] Balbes R., Dwinger P.: Distributive Lattices.University of Missouri Press, 1974. Zbl 0321.06012, MR 0373985 |
Reference:
|
[2] Busneag D.: A note on deductive systems of a Hilbert algebra.Kobe J. Math. 2 (1985), 29-35. Zbl 0584.06005, MR 0811800 |
Reference:
|
[3] Busneag D.: Hilbert algebras of fractions and maximal Hilbert algebras of quotients.Kobe J. Math. 5 (1988), 161-172. Zbl 0676.06018, MR 0990817 |
Reference:
|
[4] Busneag D.: Hertz algebras of fractions and maximal Hertz algebras of quotients.Math. Japon. 39 (1993), 461-469. MR 1278859 |
Reference:
|
[5] Chajda I.: The lattice of deductive systems on Hilbert algebras.Southeast Asian Bull. Math., to appear. Zbl 1010.03054, MR 2046584 |
Reference:
|
[6] Chajda I., Halaš R.: Congruences and ideals in Hilbert algebras.Kyungpook Math. J. 39 (1999), 429-432. MR 1728116 |
Reference:
|
[7] Chajda I., Halaš R.: Stabilizers of Hilbert algebras.Multiple Valued Logic, to appear. |
Reference:
|
[8] Chajda I., Halaš R., Zednik J.: Filters and annihilators in implication algebras.Acta Univ. Palack. Olomuc, Fac. Rerum Natur. Math. 37 (1998), 141-145. MR 1690472 |
Reference:
|
[9] Diego A.: Sur les algébras de Hilbert.Ed. Hermann, Colléction de Logique Math. Serie A 21 (1966), 1-52. |
Reference:
|
[10] Hong S.M., Jun Y.B.: On a special class of Hilbert algebras.Algebra Colloq. 3:3 (1996), 285-288. Zbl 0857.03040, MR 1412660 |
Reference:
|
[11] Hong S.M., Jun Y.B.: On deductive systems of Hilbert algebras.Comm. Korean Math. Soc. 11:3 (1996), 595-600. Zbl 0946.03079, MR 1432264 |
Reference:
|
[12] Jun Y.B.: Deductive systems of Hilbert algebras.Math. Japon. 43 (1996), 51-54. Zbl 0946.03079, MR 1373981 |
Reference:
|
[13] Jun Y.B.: Commutative Hilbert algebras.Soochow J. Math. 22:4 (1996), 477-484. Zbl 0864.03042, MR 1426553 |
Reference:
|
[14] Jun Y.B., Nam J.W., Hong S.M.: A note on Hilbert algebras.Pusan Kyongnam Math. J. (presently, East Asian Math. J.) 10 (1994), 279-285. |
. |