Previous |  Up |  Next

Article

Title: Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups (English)
Author: Danchev, Peter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 419-428
.
Category: math
.
Summary: Let $G$ be a $p$-mixed abelian group and $R$ is a commutative perfect integral domain of $\operatorname{char} R = p > 0$. Then, the first main result is that the group of all normalized invertible elements $V(RG)$ is a $\Sigma $-group if and only if $G$ is a $\Sigma $-group. In particular, the second central result is that if $G$ is a $\Sigma $-group, the $R$-algebras isomorphism $RA\cong RG$ between the group algebras $RA$ and $RG$ for an arbitrary but fixed group $A$ implies $A$ is a $p$-mixed abelian $\Sigma $-group and even more that the high subgroups of $A$ and $G$ are isomorphic, namely, ${\Cal H}_A \cong {\Cal H}_G$. Besides, when $G$ is $p$-splitting and $R$ is an algebraically closed field of $\operatorname{char} R = p \not= 0$, $V(RG)$ is a $\Sigma $-group if and only if $G_p$ and $G/G_t$ are both $\Sigma $-groups. These statements combined with our recent results published in Math. J. Okayama Univ. (1998) almost exhausted the investigations on this theme concerning the description of the group structure. (English)
Keyword: group algebras
Keyword: high subgroups
Keyword: $p$-mixed and $p$-splitting groups
Keyword: $\Sigma $-groups
MSC: 16S34
MSC: 16U60
MSC: 20C07
MSC: 20K10
MSC: 20K20
MSC: 20K21
idZBL: Zbl 1068.16042
idMR: MR1920518
.
Date available: 2009-01-08T19:23:27Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119332
.
Reference: [1] Danchev P.V.: Units in abelian group rings of prime characteristic.C.R. Acad. Bulgare Sci. 48 (8) (1995), 5-8. Zbl 0852.16024, MR 1406422
Reference: [2] Danchev P.V.: Commutative group algebras of $\sigma$-summable abelian groups.Proc. Amer. Math. Soc. 125 (9) (1997), 2559-2564. Zbl 0886.16024, MR 1415581
Reference: [3] Danchev P.V.: Commutative group algebras of abelian $\Sigma$-groups.Math. J. Okayama Univ. 40 (1998), 77-90. MR 1755921
Reference: [4] Danchev P.V.: Isomorphism of modular group algebras of totally projective abelian groups.Comm. Algebra 28 (5) (2000), 2521-2531. Zbl 0958.20003, MR 1757478
Reference: [5] Danchev P.V.: Modular group algebras of coproducts of countable abelian groups.Hokkaido Math. J. 29 (2) (2000), 255-262. Zbl 0967.20003, MR 1776708
Reference: [6] Danchev P.V.: Unit groups and Sylow $p$-subgroups in commutative group rings of prime characteristic $p$.C.R. Acad. Bulgare Sci. 54 (1) (2001), 7-10. MR 1826044
Reference: [7] Danchev P.V.: Sylow $p$-subgroups of modular abelian group rings.C.R. Acad. Bulgare Sci. 54 (2) (2001), 5-8. Zbl 0972.16018, MR 1826186
Reference: [8] Danchev P.V.: Sylow $p$-subgroups of commutative modular and semisimple group rings.C.R. Acad. Bulgare Sci. 54 (6) (2001), 5-6. Zbl 0987.16023, MR 1845379
Reference: [9] Danchev P.V.: Normed units in abelian group rings.Glasgow Math. J. 43 (3) (2001), 365-373. Zbl 0997.16019, MR 1878581
Reference: [10] Danchev P.V.: Criteria for unit groups in commutative group rings.submitted. Zbl 1120.16302
Reference: [11] Danchev P.V.: Maximal divisible subgroups in modular group algebras of $p$-mixed and $p$-splitting abelian groups.submitted. Zbl 1086.16017
Reference: [12] Danchev P.V.: Basic subgroups in abelian group rings.Czechoslovak Math. J. 52 1 (2002), 129-140. Zbl 1003.16026, MR 1885462
Reference: [13] Danchev P.V.: Basic subgroups in commutative modular group rings.submitted. Zbl 1057.16028
Reference: [14] Danchev P.V.: Basic subgroups in group rings of abelian groups.J. Group Theory, to appear. MR 1826044
Reference: [15] Danchev P.V.: Commutative modular group algebras of Warfield Abelian groups.Trans. Amer. Math. Soc., to appear. MR 2038834
Reference: [16] Fuchs L.: Infinite Abelian Groups.vol. I and II, Mir, Moscow, 1974 and 1977 (in Russian). Zbl 0338.20063, MR 0457533
Reference: [17] Higman G.: The units of group rings.Proc. London Math. Soc. 46 (1938-39), 231-248. Zbl 0025.24302, MR 0002137
Reference: [18] Irwin J.M.: High subgroups of abelian torsion groups.Pacific J. Math. 11 (1961), 1375-1384. Zbl 0106.02303, MR 0136654
Reference: [19] Irwin J.M., Walker E.A.: On $N$-high subgroups of abelian groups.Pacific J. Math. 11 (1961), 1363-1374. Zbl 0106.02304, MR 0136653
Reference: [20] Irwin J.M., Walker E.A.: On isotype subgroups of abelian groups.Bull. Soc. Math. France 89 (1961), 451-460. Zbl 0102.26701, MR 0147539
Reference: [21] Irwin J.M., Peercy C., Walker E.A.: Splitting properties of high subgroups.Bull. Soc. Math. France 90 (1962), 185-192. Zbl 0106.02401, MR 0144958
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_3.pdf 225.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo