Title:
|
Commutative modular group algebras of $p$-mixed and $p$-splitting abelian $\Sigma$-groups (English) |
Author:
|
Danchev, Peter |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
419-428 |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a $p$-mixed abelian group and $R$ is a commutative perfect integral domain of $\operatorname{char} R = p > 0$. Then, the first main result is that the group of all normalized invertible elements $V(RG)$ is a $\Sigma $-group if and only if $G$ is a $\Sigma $-group. In particular, the second central result is that if $G$ is a $\Sigma $-group, the $R$-algebras isomorphism $RA\cong RG$ between the group algebras $RA$ and $RG$ for an arbitrary but fixed group $A$ implies $A$ is a $p$-mixed abelian $\Sigma $-group and even more that the high subgroups of $A$ and $G$ are isomorphic, namely, ${\Cal H}_A \cong {\Cal H}_G$. Besides, when $G$ is $p$-splitting and $R$ is an algebraically closed field of $\operatorname{char} R = p \not= 0$, $V(RG)$ is a $\Sigma $-group if and only if $G_p$ and $G/G_t$ are both $\Sigma $-groups. These statements combined with our recent results published in Math. J. Okayama Univ. (1998) almost exhausted the investigations on this theme concerning the description of the group structure. (English) |
Keyword:
|
group algebras |
Keyword:
|
high subgroups |
Keyword:
|
$p$-mixed and $p$-splitting groups |
Keyword:
|
$\Sigma $-groups |
MSC:
|
16S34 |
MSC:
|
16U60 |
MSC:
|
20C07 |
MSC:
|
20K10 |
MSC:
|
20K20 |
MSC:
|
20K21 |
idZBL:
|
Zbl 1068.16042 |
idMR:
|
MR1920518 |
. |
Date available:
|
2009-01-08T19:23:27Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119332 |
. |
Reference:
|
[1] Danchev P.V.: Units in abelian group rings of prime characteristic.C.R. Acad. Bulgare Sci. 48 (8) (1995), 5-8. Zbl 0852.16024, MR 1406422 |
Reference:
|
[2] Danchev P.V.: Commutative group algebras of $\sigma$-summable abelian groups.Proc. Amer. Math. Soc. 125 (9) (1997), 2559-2564. Zbl 0886.16024, MR 1415581 |
Reference:
|
[3] Danchev P.V.: Commutative group algebras of abelian $\Sigma$-groups.Math. J. Okayama Univ. 40 (1998), 77-90. MR 1755921 |
Reference:
|
[4] Danchev P.V.: Isomorphism of modular group algebras of totally projective abelian groups.Comm. Algebra 28 (5) (2000), 2521-2531. Zbl 0958.20003, MR 1757478 |
Reference:
|
[5] Danchev P.V.: Modular group algebras of coproducts of countable abelian groups.Hokkaido Math. J. 29 (2) (2000), 255-262. Zbl 0967.20003, MR 1776708 |
Reference:
|
[6] Danchev P.V.: Unit groups and Sylow $p$-subgroups in commutative group rings of prime characteristic $p$.C.R. Acad. Bulgare Sci. 54 (1) (2001), 7-10. MR 1826044 |
Reference:
|
[7] Danchev P.V.: Sylow $p$-subgroups of modular abelian group rings.C.R. Acad. Bulgare Sci. 54 (2) (2001), 5-8. Zbl 0972.16018, MR 1826186 |
Reference:
|
[8] Danchev P.V.: Sylow $p$-subgroups of commutative modular and semisimple group rings.C.R. Acad. Bulgare Sci. 54 (6) (2001), 5-6. Zbl 0987.16023, MR 1845379 |
Reference:
|
[9] Danchev P.V.: Normed units in abelian group rings.Glasgow Math. J. 43 (3) (2001), 365-373. Zbl 0997.16019, MR 1878581 |
Reference:
|
[10] Danchev P.V.: Criteria for unit groups in commutative group rings.submitted. Zbl 1120.16302 |
Reference:
|
[11] Danchev P.V.: Maximal divisible subgroups in modular group algebras of $p$-mixed and $p$-splitting abelian groups.submitted. Zbl 1086.16017 |
Reference:
|
[12] Danchev P.V.: Basic subgroups in abelian group rings.Czechoslovak Math. J. 52 1 (2002), 129-140. Zbl 1003.16026, MR 1885462 |
Reference:
|
[13] Danchev P.V.: Basic subgroups in commutative modular group rings.submitted. Zbl 1057.16028 |
Reference:
|
[14] Danchev P.V.: Basic subgroups in group rings of abelian groups.J. Group Theory, to appear. MR 1826044 |
Reference:
|
[15] Danchev P.V.: Commutative modular group algebras of Warfield Abelian groups.Trans. Amer. Math. Soc., to appear. MR 2038834 |
Reference:
|
[16] Fuchs L.: Infinite Abelian Groups.vol. I and II, Mir, Moscow, 1974 and 1977 (in Russian). Zbl 0338.20063, MR 0457533 |
Reference:
|
[17] Higman G.: The units of group rings.Proc. London Math. Soc. 46 (1938-39), 231-248. Zbl 0025.24302, MR 0002137 |
Reference:
|
[18] Irwin J.M.: High subgroups of abelian torsion groups.Pacific J. Math. 11 (1961), 1375-1384. Zbl 0106.02303, MR 0136654 |
Reference:
|
[19] Irwin J.M., Walker E.A.: On $N$-high subgroups of abelian groups.Pacific J. Math. 11 (1961), 1363-1374. Zbl 0106.02304, MR 0136653 |
Reference:
|
[20] Irwin J.M., Walker E.A.: On isotype subgroups of abelian groups.Bull. Soc. Math. France 89 (1961), 451-460. Zbl 0102.26701, MR 0147539 |
Reference:
|
[21] Irwin J.M., Peercy C., Walker E.A.: Splitting properties of high subgroups.Bull. Soc. Math. France 90 (1962), 185-192. Zbl 0106.02401, MR 0144958 |
. |