Previous |  Up |  Next


irrationals; $f$-cone; weak $f$-cone; $n$-splitting compact set
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$.
[BJ] Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line. A K Peters, 1995. MR 1350295
[BL] Baumgartner J., Laver R.: Iterated perfect-set forcing. Ann. Math. Logic 17 (1979), 3 271-288. MR 0556894 | Zbl 0427.03043
[CN] Comfort W.W., Negrepontis S.: Theory of Ultrafilters. Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0396267 | Zbl 0298.02004
[vD] van Douwen E.K.: The integers and topology. in: Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp.111-167. MR 0776619 | Zbl 0561.54004
[Go] Goldstern M.: Tools for your forcing construction. in: Set Theory of the Reals, H. Judah, Ed., Israel Math. Conf. Proceedings 6 (1993), pp.305-360. MR 1234283 | Zbl 0834.03016
[GS] Goldstern M., Shelah S.: Many simple cardinal invariants. Arch. Math. Logic 32 (1993), 3 203-221. MR 1201650 | Zbl 0786.03030
[K] Kunen K.: Set Theory. Studies on Logic and the Foundations of Mathematics, North-Holland, 1980. MR 0597342 | Zbl 0960.03033
[NR] Newelski L., Roslanowski A.: The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc. 117 (1993), 3 823-831. MR 1112500 | Zbl 0778.03016
[R] Roslanowski A.: Mycielski ideals generated by uncountable systems. Colloq. Math. 66 (1994), 2 187-200. MR 1268063 | Zbl 0833.04002
Partner of
EuDML logo