Previous |  Up |  Next

Article

Title: Covering $^\omega\omega$ by special Cantor sets (English)
Author: Gruenhage, Gary
Author: Levy, Ronnie
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 497-509
.
Category: math
.
Summary: This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$. (English)
Keyword: irrationals
Keyword: $f$-cone
Keyword: weak $f$-cone
Keyword: $n$-splitting compact set
MSC: 03E17
MSC: 03E35
MSC: 54A35
idZBL: Zbl 1072.03028
idMR: MR1920525
.
Date available: 2009-01-08T19:24:19Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119339
.
Related article: http://dml.cz/handle/10338.dmlcz/119446
.
Reference: [BJ] Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line.A K Peters, 1995. MR 1350295
Reference: [BL] Baumgartner J., Laver R.: Iterated perfect-set forcing.Ann. Math. Logic 17 (1979), 3 271-288. Zbl 0427.03043, MR 0556894
Reference: [CN] Comfort W.W., Negrepontis S.: Theory of Ultrafilters.Springer-Verlag, Berlin-Heidelberg-New York, 1974. Zbl 0298.02004, MR 0396267
Reference: [vD] van Douwen E.K.: The integers and topology.in: Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp.111-167. Zbl 0561.54004, MR 0776619
Reference: [Go] Goldstern M.: Tools for your forcing construction.in: Set Theory of the Reals, H. Judah, Ed., Israel Math. Conf. Proceedings 6 (1993), pp.305-360. Zbl 0834.03016, MR 1234283
Reference: [GS] Goldstern M., Shelah S.: Many simple cardinal invariants.Arch. Math. Logic 32 (1993), 3 203-221. Zbl 0786.03030, MR 1201650
Reference: [K] Kunen K.: Set Theory.Studies on Logic and the Foundations of Mathematics, North-Holland, 1980. Zbl 0960.03033, MR 0597342
Reference: [NR] Newelski L., Roslanowski A.: The ideal determined by the unsymmetric game.Proc. Amer. Math. Soc. 117 (1993), 3 823-831. Zbl 0778.03016, MR 1112500
Reference: [R] Roslanowski A.: Mycielski ideals generated by uncountable systems.Colloq. Math. 66 (1994), 2 187-200. Zbl 0833.04002, MR 1268063
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_10.pdf 268.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo