Title:
|
Covering $^\omega\omega$ by special Cantor sets (English) |
Author:
|
Gruenhage, Gary |
Author:
|
Levy, Ronnie |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
497-509 |
. |
Category:
|
math |
. |
Summary:
|
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space $^\omega \omega $ of irrationals, or certain of its subspaces. In particular, given $f\in {}^\omega (\omega \setminus \{0\})$, we consider compact sets of the form $\prod_{i\in \omega }B_i$, where $|B_i|= f(i)$ for all, or for infinitely many, $i$. We also consider ``$n$-splitting'' compact sets, i.e., compact sets $K$ such that for any $f\in K$ and $i\in \omega $, $|\{g(i):g\in K, g\restriction i=f\restriction i\}|= n$. (English) |
Keyword:
|
irrationals |
Keyword:
|
$f$-cone |
Keyword:
|
weak $f$-cone |
Keyword:
|
$n$-splitting compact set |
MSC:
|
03E17 |
MSC:
|
03E35 |
MSC:
|
54A35 |
idZBL:
|
Zbl 1072.03028 |
idMR:
|
MR1920525 |
. |
Date available:
|
2009-01-08T19:24:19Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119339 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/119446 |
. |
Reference:
|
[BJ] Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line.A K Peters, 1995. MR 1350295 |
Reference:
|
[BL] Baumgartner J., Laver R.: Iterated perfect-set forcing.Ann. Math. Logic 17 (1979), 3 271-288. Zbl 0427.03043, MR 0556894 |
Reference:
|
[CN] Comfort W.W., Negrepontis S.: Theory of Ultrafilters.Springer-Verlag, Berlin-Heidelberg-New York, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[vD] van Douwen E.K.: The integers and topology.in: Handbook of Set-theoretic Topology, K. Kunen and J.E. Vaughan, Eds., North-Holland, Amsterdam, 1984, pp.111-167. Zbl 0561.54004, MR 0776619 |
Reference:
|
[Go] Goldstern M.: Tools for your forcing construction.in: Set Theory of the Reals, H. Judah, Ed., Israel Math. Conf. Proceedings 6 (1993), pp.305-360. Zbl 0834.03016, MR 1234283 |
Reference:
|
[GS] Goldstern M., Shelah S.: Many simple cardinal invariants.Arch. Math. Logic 32 (1993), 3 203-221. Zbl 0786.03030, MR 1201650 |
Reference:
|
[K] Kunen K.: Set Theory.Studies on Logic and the Foundations of Mathematics, North-Holland, 1980. Zbl 0960.03033, MR 0597342 |
Reference:
|
[NR] Newelski L., Roslanowski A.: The ideal determined by the unsymmetric game.Proc. Amer. Math. Soc. 117 (1993), 3 823-831. Zbl 0778.03016, MR 1112500 |
Reference:
|
[R] Roslanowski A.: Mycielski ideals generated by uncountable systems.Colloq. Math. 66 (1994), 2 187-200. Zbl 0833.04002, MR 1268063 |
. |