Previous |  Up |  Next

Article

Title: Čech-completeness and ultracompleteness in “nice spaces” (English)
Author: de Luna, Miguel López
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 515-524
.
Category: math
.
Summary: We prove that if $X^n$ is a union of $n$ subspaces of pointwise countable type then the space $X$ is of pointwise countable type. If $X^\omega $ is a countable union of ultracomplete spaces, the space $X^\omega $ is ultracomplete. We give, under CH, an example of a Čech-complete, countably compact and non-ultracomplete space, giving thus a partial answer to a question asked in [BY2]. (English)
Keyword: ultracompleteness
Keyword: Čech-completeness
Keyword: countable type
Keyword: pointwise countable type
MSC: 54C10
MSC: 54C25
MSC: 54D06
MSC: 54D25
MSC: 54D35
MSC: 54D70
MSC: 54E50
MSC: 54F65
MSC: 54H11
idZBL: Zbl 1090.54023
idMR: MR1920527
.
Date available: 2009-01-08T19:24:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119341
.
Reference: [Ar] Arhangel'skiĭ A.V.: Bicompact sets and the topology of spaces.Dokl. Akad. Nauk SSSR 150 (1963), 9-12. MR 0150733
Reference: [BY1] Buhagiar D., Yoshioka I.: Ultracomplete topological spaces.preprint. Zbl 1019.54015, MR 1924245
Reference: [BY2] Buhagiar D., Yoshioka I.: Sums and products of ultracomplete topological spaces.Topology Appl., to appear. Zbl 1019.54015, MR 1919293
Reference: [BGT] Balogh Z, Gruenhage G., Tkachuk V.: Additivity of metrizability and related properties.Topology Appl. (1998), 84 91-103. Zbl 0991.54032, MR 1611277
Reference: [Lo] López de Luna M.: Some new results on Čech-complete spaces.Topology Proceedings, vol.24, 1999. MR 1876382
Reference: [Pa] Pasynkov B.A.: Almost metrizable topological groups (in Russian).Dokl. Akad. Nauk SSSR (1965), 161.2 281-284. MR 0204565
Reference: [PT] Ponomarev V.I., Tkachuk V.V.: The countable character of $X$ in $\beta X$ compared with the countable character of the diagonal in $X\times X$.Vestnik Moskovskogo Universiteta, Matematika, 42 (1987), 5 16-19. Zbl 0652.54003, MR 0913263
Reference: [Tk] Tkachuk V.V.: Finite and countable additivity topological properties in nice spaces.Trans. Amer. Math. Soc. (1994), 341 585-601. MR 1129438
Reference: [Tk1] Tkachenko M.G.: On a property of bicompacta.Seminar on General Topology, ed. by P.S. Alexandroff, Mosc. Univ. P.H., Moscow, 1981, pp.149-156. Zbl 0491.54002, MR 0656955
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_12.pdf 231.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo