Previous |  Up |  Next

Article

Title: More on strongly sequential spaces (English)
Author: Mynard, Frédéric
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 525-530
.
Category: math
.
Summary: Strongly sequential spaces were introduced and studied to solve a problem of Tanaka concerning the product of sequential topologies. In this paper, further properties of strongly sequential spaces are investigated. (English)
Keyword: sequential
Keyword: strongly sequential
Keyword: Fréchet
Keyword: Tanaka topology
MSC: 54A20
MSC: 54B10
MSC: 54B30
MSC: 54D55
idZBL: Zbl 1090.54006
idMR: MR1920528
.
Date available: 2009-01-08T19:24:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119342
.
Reference: [1] Dolecki S.: Convergence-theoretic approach to quotient quest.Topology Appl. 73 1-21 (1996). Zbl 0862.54001, MR 1413721
Reference: [2] Dolecki S., Mynard F.: Convergence-theoretic mechanism behind product theorems.Topology Appl. 104 67-99 (2000). MR 1780899
Reference: [3] Dolecki S., Nogura T.: Two-fold theorem on Fréchetness of products.Czech. Math. J. 49 (124) 421-429 (1999). Zbl 0949.54010, MR 1692508
Reference: [4] Dolecki S., Nogura T.: Countably infinite products of sequential topologies.to appear. Zbl 0991.54028, MR 1885785
Reference: [5] Engelking R.: Topology.PWN, 1977. Zbl 0932.01059
Reference: [6] Handbook of Set-theoretic Topology: edited by K. Kunen and J.E. Vaughan, North-Holland Publ., 1984.. MR 0776619
Reference: [7] Michael E.: A quintuple quotient quest.Gen. Topology Appl. 2 91-138 (1972). Zbl 0238.54009, MR 0309045
Reference: [8] Michael E.: Local compactness and cartesian product of quotient maps and $k$-spaces.Ann. Inst. Fourier (Grenoble) 19 281-286 (1968). MR 0244943
Reference: [9] Michael E., Olson R.C., Siwiec D.: $A$-spaces and countably biquotient maps.Dissertationes Math. 133 (1976).
Reference: [10] Mynard F.: Strongly sequential spaces.Comment. Math. Univ. Carolinae 41.1 (2000), 143-153. Zbl 1037.54504, MR 1756935
Reference: [11] Mynard F.: Coreflectively modified continuous duality applied to classical product theorems.Applied General Topology 2 (2) (2002), 119-154. MR 1890032
Reference: [12] Tanaka Y.: Products of sequential spaces.Proc. Amer. Math. Soc. 54 371-375 (1976). Zbl 0292.54025, MR 0397665
Reference: [13] Tanaka Y.: Private communication.November 2000.
Reference: [14] Tanaka Y.: Private communication.June 2001.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_13.pdf 193.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo