Previous |  Up |  Next

Article

Title: On partial cubes and graphs with convex intervals (English)
Author: Brešar, Boštjan
Author: Klavžar, Sandi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 537-545
.
Category: math
.
Summary: A graph is called a partial cube if it admits an isometric embedding into a hypercube. Subdivisions of wheels are considered with respect to such embeddings and with respect to the convexity of their intervals. This allows us to answer in negative a question of Chepoi and Tardif from 1994 whether all bipartite graphs with convex intervals are partial cubes. On a positive side we prove that a graph which is bipartite, has convex intervals, and is not a partial cube, always contains a subdivision of $K_4$. (English)
Keyword: isometric embeddings
Keyword: hypercubes
Keyword: partial cubes
Keyword: convex intervals
Keyword: subdivisions
MSC: 05C12
MSC: 05C75
idZBL: Zbl 1090.05023
idMR: MR1920530
.
Date available: 2009-01-08T19:24:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119344
.
Reference: [1] Aurenhammer F., Formann M., Idury R., Schäffer A., Wagner F.: Faster isometric embeddings in products of complete graphs.Discrete Appl. Math. 52 (1994), 17-28. MR 1283241
Reference: [2] Aurenhammer F., Hagauer J.: Recognizing binary Hamming graphs in $O(n^2 \log n)$ time.Math. Systems Theory 28 (1995), 387-395. MR 1371084
Reference: [3] Avis D.: Hypermetric spaces and the Hamming cone.Canad. J. Math. 33 (1981), 795-802. Zbl 0445.52008, MR 0634138
Reference: [4] Chepoi V.: $d$-convexity and isometric subgraphs of Hamming graphs.Cybernetics 1 (1988), 6-9. MR 0939233
Reference: [5] Chepoi V.: On distances in benzenoid graphs.J. Chem. Inform. Comput. Sci. 36 (1996), 1169-1172.
Reference: [6] Chepoi V., Klavžar S.: The Wiener index and the Szeged index of benzenoid systems in linear time.J. Chem. Inform. Comput. Sci. 37 (1997), 752-755.
Reference: [7] Chepoi V., Tardif C.: personal communication.1994.
Reference: [8] Djoković D.: Distance preserving subgraphs of hypercubes.J. Combin. Theory Ser. B 14 (1973), 263-267. MR 0314669
Reference: [9] Fukuda K., Handa K.: Antipodal graphs and oriented matroids.Discrete Math. 111 (1993), 245-256. Zbl 0782.05069, MR 1210100
Reference: [10] Graham R.L., Pollak H.: On addressing problem for loop switching.Bell System Tech. J. 50 (1971), 2495-2519. MR 0289210
Reference: [11] Imrich W., Klavžar S.: On the complexity of recognizing Hamming graphs and related classes of graphs.European J. Combin. 17 (1996), 209-221. MR 1379372
Reference: [12] Imrich W., Klavžar S.: A convexity lemma and expansion procedures for bipartite graphs.European J. Combin. 19 (1998), 677-685. MR 1642702
Reference: [13] Imrich W., Klavžar S.: Product Graphs: Structure and Recognition.Wiley, New York, 2000. MR 1788124
Reference: [14] Klavžar S., Gutman I.: Wiener number of vertex-weighted graphs and a chemical application.Discrete Appl. Math. 80 (1997), 73-81. MR 1489061
Reference: [15] Lawrence J.: Lopsided sets and orthant-intersection by convex sets.Pacific J. Math. 104 (1983), 155-173. Zbl 0471.52003, MR 0683734
Reference: [16] Mollard M.: Interval-regularity does not lead to interval monotonicity.Discrete Math. 118 (1993), 233-237. Zbl 0784.05040, MR 1230065
Reference: [17] Mulder H.M.: The Interval Function of a Graph.Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980. MR 0605838
Reference: [18] Wilkeit E.: Isometric embeddings in Hamming graphs.J. Combin. Theory Ser. B 50 (1990), 179-197. Zbl 0657.05023, MR 1081222
Reference: [19] Winkler P.: Isometric embeddings in products of complete graphs.Discrete Appl. Math. 7 (1984), 221-225. MR 0727925
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_15.pdf 210.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo