Previous |  Up |  Next

Article

Title: Implicit Markov kernels in probability theory (English)
Author: Hlubinka, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 43
Issue: 3
Year: 2002
Pages: 547-564
.
Category: math
.
Summary: Having Polish spaces $\Bbb X$, $\Bbb Y$ and $\Bbb Z$ we shall discuss the existence of an $\Bbb X \times \Bbb Y$-valued random vector $(\xi,\eta )$ such that its conditional distributions $\operatorname{K}_{x} = \Cal L(\eta\mid \xi=x)$ satisfy $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ for some maps $e:\Bbb X\times \Cal M_1(\Bbb Y) \to \Bbb Z$, $c:\Bbb X \to \Bbb Z$ or multifunction $C:\Bbb X \to 2^{\Bbb Z}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname{K}:\Bbb X \to \Cal M_1(\Bbb Y)$ defined implicitly by $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem. (English)
Keyword: Markov kernels
Keyword: universal measurability
Keyword: selections
Keyword: moment problems
Keyword: extreme points
MSC: 28A35
MSC: 28B20
MSC: 46A55
MSC: 60A10
MSC: 60B05
idZBL: Zbl 1091.28003
idMR: MR1920531
.
Date available: 2009-01-08T19:25:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119345
.
Reference: [1] Aubin J.-A., Frankowska H.: Set-valued Analysis.Birkhäuser, Boston, 1990. Zbl 1168.49014, MR 1048347
Reference: [2] Cohn D.L.: Measure Theory.Birkhäuser, Boston, second edition, 1993. Zbl 0860.28001, MR 1454121
Reference: [3] Kallenberg O.: Foundations of modern probability.Probab. Appl., Springer Verlag, New York, 1997. Zbl 0996.60001, MR 1464694
Reference: [4] Srivastava S.M.: A Course on Borel Sets.Graduate Texts in Mathematics, vol. 180, Springer Verlag, New York, 1998. Zbl 0903.28001, MR 1619545
Reference: [5] Štěpán J., Hlubinka D.: Two-dimensional probabilities with a given conditional structure.Kybernetika 35(3) 367-381 (1999). MR 1704672
Reference: [6] Štěpán J.: How to construct a two-dimensional random vector with a given conditional structure.in: Viktor Beneš and Josef Štěpán, Eds, {Distribution with given marginals and moment problems}, 1997. MR 1614669
Reference: [7] Topsøe F.: Topology and Measure.Lecture Notes in Mathematics 133, Springer Verlag, Berlin, 1970. MR 0422560
Reference: [8] Winkler G.: Choquet Order and Simplices.Lecture Notes in Mathematics 1145, Springer Verlag, Berlin, 1985. Zbl 0578.46010, MR 0808401
Reference: [9] Winkler G.: Extreme points of moment sets.Mathematics of operational research 13(4) 581-587 (1988). Zbl 0669.60009, MR 0971911
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_43-2002-3_16.pdf 284.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo