Title:
|
Implicit Markov kernels in probability theory (English) |
Author:
|
Hlubinka, Daniel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
43 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
547-564 |
. |
Category:
|
math |
. |
Summary:
|
Having Polish spaces $\Bbb X$, $\Bbb Y$ and $\Bbb Z$ we shall discuss the existence of an $\Bbb X \times \Bbb Y$-valued random vector $(\xi,\eta )$ such that its conditional distributions $\operatorname{K}_{x} = \Cal L(\eta\mid \xi=x)$ satisfy $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ for some maps $e:\Bbb X\times \Cal M_1(\Bbb Y) \to \Bbb Z$, $c:\Bbb X \to \Bbb Z$ or multifunction $C:\Bbb X \to 2^{\Bbb Z}$ respectively. The problem is equivalent to the existence of universally measurable Markov kernel $\operatorname{K}:\Bbb X \to \Cal M_1(\Bbb Y)$ defined implicitly by $e(x, \operatorname{K}_{x}) = c(x)$ or $e(x,\operatorname{K}_{x}) \in C(x)$ respectively. In the paper we shall provide sufficient conditions for the existence of the desired Markov kernel. We shall discuss some special solutions of the $(e,c)$- or $(e,C)$-problem and illustrate the theory on the generalized moment problem. (English) |
Keyword:
|
Markov kernels |
Keyword:
|
universal measurability |
Keyword:
|
selections |
Keyword:
|
moment problems |
Keyword:
|
extreme points |
MSC:
|
28A35 |
MSC:
|
28B20 |
MSC:
|
46A55 |
MSC:
|
60A10 |
MSC:
|
60B05 |
idZBL:
|
Zbl 1091.28003 |
idMR:
|
MR1920531 |
. |
Date available:
|
2009-01-08T19:25:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119345 |
. |
Reference:
|
[1] Aubin J.-A., Frankowska H.: Set-valued Analysis.Birkhäuser, Boston, 1990. Zbl 1168.49014, MR 1048347 |
Reference:
|
[2] Cohn D.L.: Measure Theory.Birkhäuser, Boston, second edition, 1993. Zbl 0860.28001, MR 1454121 |
Reference:
|
[3] Kallenberg O.: Foundations of modern probability.Probab. Appl., Springer Verlag, New York, 1997. Zbl 0996.60001, MR 1464694 |
Reference:
|
[4] Srivastava S.M.: A Course on Borel Sets.Graduate Texts in Mathematics, vol. 180, Springer Verlag, New York, 1998. Zbl 0903.28001, MR 1619545 |
Reference:
|
[5] Štěpán J., Hlubinka D.: Two-dimensional probabilities with a given conditional structure.Kybernetika 35(3) 367-381 (1999). MR 1704672 |
Reference:
|
[6] Štěpán J.: How to construct a two-dimensional random vector with a given conditional structure.in: Viktor Beneš and Josef Štěpán, Eds, {Distribution with given marginals and moment problems}, 1997. MR 1614669 |
Reference:
|
[7] Topsøe F.: Topology and Measure.Lecture Notes in Mathematics 133, Springer Verlag, Berlin, 1970. MR 0422560 |
Reference:
|
[8] Winkler G.: Choquet Order and Simplices.Lecture Notes in Mathematics 1145, Springer Verlag, Berlin, 1985. Zbl 0578.46010, MR 0808401 |
Reference:
|
[9] Winkler G.: Extreme points of moment sets.Mathematics of operational research 13(4) 581-587 (1988). Zbl 0669.60009, MR 0971911 |
. |