[1] Acquistapace P.: 
On BMO regularity for linear elliptic systems. Ann. Mat. Pura Appl. (4) 161 (1992), 231-269. 
MR 1174819 | 
Zbl 0802.35015 
[2] Agmon S., Douglis A., Nirenberg L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. XII (1959), 623-727. 
MR 0125307 | 
Zbl 0093.10401 
[3] Agmon S., Douglis A., Nirenberg L.: 
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm. Pure Appl. Math. XVII (1964), 35-92. 
MR 0162050 | 
Zbl 0123.28706 
[4] Bramanti M., Brandolini L.: 
$L^p$ estimates for nonvariational hypoelliptic operators with VMO coefficients. Trans. Amer. Math. Soc. 352 2 (2000), 781-822. 
MR 1608289 
[5] Bramanti M., Brandolini L.: 
$L^p$ estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. to appear in Rend. Sem. Mat. Univ. Politec. Torino. 
MR 1962808 | 
Zbl 0935.35037 
[6] Bramanti M., Brandolini L.: 
Estimates of BMO type for singular integrals on spaces of homogeneous type and applications to hypoelliptic pdes. preprint. 
MR 2174915 | 
Zbl 1082.35060 
[7] Bramanti M., Cerutti M.C.: 
$W^{1,2}_p$ Solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial Differential Equations 18 (1993), 1735-1763. 
MR 1239929 | 
Zbl 0816.35045 
[8] Burger N.: 
Espace des fonctions à variation moyenne bornée sur un espace de nature homogène. C.R. Acad. Sci. Paris Série A 286 (1978), 139-142. 
MR 0467176 | 
Zbl 0368.46037 
[9] Campanato S.: 
Equazioni ellittiche del II ordine e spazi ${\Cal L}^{(2,\lambda)}$. Ann. Mat. Pura Appl. (4) 69 (1965), 321-381. 
MR 0192168 
[10] Campanato S.: 
Sistemi ellittici in forma di divergenza. Regolarità all'interno. Quaderni SNS Pisa (1980). 
MR 0668196 
[11] Cordes H.O.: 
Zero order a priori estimates for solutions of elliptic differential equations. Proceedings of Symposia in Pure Mathematics IV (1961), 157-166. 
MR 0146511 | 
Zbl 0178.46001 
[12] Chiarenza F., Franciosi M., Frasca M.: 
$L\sp p$ estimates for linear elliptic systems with discontinuous coefficients. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), 1 27-32. 
MR 1273890 | 
Zbl 0803.35016 
[13] Chiarenza F., Frasca M., Longo P.: 
Interior $W^{2,p}$-estimates for nondivergence elliptic equations with discontinuous coefficients Ricerche Mat. XL (1991), 149-168. 
MR 1191890 | 
Zbl 0772.35017 
[14] Chiarenza F., Frasca M., Longo P.: 
$W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336 (1993), 1 841-853. 
MR 1088476 
[15] Danielli D.: 
A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations. Potential Anal. 11 (1999), 387-413. 
MR 1719837 
[16] Danielli D., Garofalo N., Nhieu D.M.: 
Trace inequalities for Carnot-Carathéodory spaces and applications. Ann. SNS Pisa Cl. Sci. (4) 27 (1998), 195-252. 
MR 1664688 
[17] Di Fazio G.: 
$L\sp p$ estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) 10 (1996), 2 409-420. 
MR 1405255 
[18] Di Fazio G., Palagachev D.K.: 
Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients. Comment. Math. Univ. Carolinae 37 (1996), 3 537-556. 
MR 1426919 
[19] Di Fazio G., Palagachev D.K.: 
Oblique derivative problem for quasilinear elliptic equations with VMO coefficients. Bull. Austral. Math. Soc. 53 (1996), 3 501-513. 
MR 1388600 
[20] Di Fazio G., Ragusa M.A.: 
Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112 (1993), 2 241-256. 
MR 1213138 
[21] Di Fazio G., Palagachev D.K., Ragusa M.A.: 
Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 166 (1999), 2 179-196. 
MR 1707751 
[22] Franchi B., Gallot S., Wheeden R.L.: 
Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann. 300 (1994), 4 557-571. 
MR 1314734 
[23] Franchi B., Gutiérrez C.E., Wheeden R.L.: 
Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), 523-604. 
MR 1265808 
[24] Franchi B., Serra Cassano F.: 
Regularité partielle pour une classe de systèmes elliptiques dégénérés. C.R. Acad. Sci. Paris Série I 316 (1993), 37-40. 
MR 1198746 
[25] Garofalo N.: Recent Developments in the Theory of Subelliptic Equations and its Geometric Aspects. Birkhäuser, to appear.
[26] Garofalo N., Nhieu D.M.: 
Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. XLIX (1996), 1081-1144. 
MR 1404326 
[27] Geisler M.: 
Morrey-Campanato spaces on manifolds. Comment. Math. Univ. Carolinae 29 (1988), 2 309-318. 
MR 0957401 
[28] Gianazza U.: 
Higher Integrability for quasi- minima of functionals depending on vector fields. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 17 (1993), 209-227. 
MR 1268631 
[29] Giaquinta M.: 
Multiple integrals in calculus of variations and nonlinear elliptic systems. Ann. of Math. Stud. 105 (1983), Princeton University Press. 
MR 0717034 
[30] Giaquinta M.: 
Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1993. 
MR 1239172 | 
Zbl 0786.35001 
[31] Gromov M.: Carnot-Carathéodory spaces seen from within. Inst. Hautes Études Sci. Publ. Math. (1994).
[32] Guidetti D.: 
General linear boundary value problems for elliptic operators with VMO coefficients. Math. Nachr. 237 (2002), 62-88. 
MR 1894353 | 
Zbl 1009.35024 
[33] Hajłasz P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5 (1996), 403-415.
[34] Hajłasz P., Koskela P.: 
Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688. 
MR 1683160 
[35] Hörmander L.: 
Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171. 
MR 0222474 
[36] Huang Q.: 
Estimates on the Generalized Morrey spaces $L^{2,\lambda }_\varphi $ and BMO for linear elliptic systems. Indiana Univ. Math. J. 45 2 (1996), 397-439. 
MR 1414336 
[37] Lu G.: 
Embedding theorems on Campanato-Morrey space for vector fields on Hörmander type. Approx. Theory Appl. (N.S.) 14 (1998), 1 69-80. 
MR 1651473 
[38] Lu G.: 
Embedding theorems on Campanato-Morrey space for vector fields and applications. C.R. Acad. Sci. Paris Série. I 320 (1995), 4 429-434. 
MR 1320116 
[39] Miranda C.: 
Sulle equazioni ellittiche del secondo ordine a coefficienti discontinui. Ann. Mat. Pura Appl. 63 (1963), 353-386. 
MR 0170090 
[40] Sánchez-Calle A.: 
Fundamental solutions and geometry of the sum of squares of vector fields. Invent. Math. 78 (1984), 143-160. 
MR 0762360 
[41] Sarason D.: 
Functions of vanishing mean oscillations. Trans. Amer. Math. Soc. 207 (1975), 391-405. 
MR 0377518 
[42] Trudinger N.S., Wang X.J.: 
On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math. 124 (2002), 2 369-410. 
MR 1890997 | 
Zbl 1067.35023 
[43] Xu C.-J.: 
Subelliptic variational problems. Bull. Soc. Math. France 118 (1990), 147-169. 
MR 1087376 
[44] Xu C.-J., Zuily C.: 
Higher interior regularity for quasilinear subellliptic systems. Calc. Var. 5 (1997), 323-343. 
MR 1450714