[1] Caffarelli L., Kohn R., Nirenberg L.: 
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Apl. Math. 35 (1982), 771-831. 
MR 0673830 | 
Zbl 0509.35067[2] Kučera P., Skalák Z.: Smoothness of the velocity time derivative in the vicinity of regular points of the Navier-Stokes equations. Proceedings of the $4^{th}$ Seminar ``Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)'', Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.83-86.
[3] Ladyzhenskaya O.A., Seregin G.A.: 
On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations. J. Math. Fluid Mech. 1 (1999), 356-387. 
MR 1738171 | 
Zbl 0954.35129[4] Lin F.: 
A new proof of the Caffarelli-Kohn-Nirenberg Theorem. Comm. Pure Appl. Math. 51 (1998), 241-257. 
MR 1488514 | 
Zbl 0958.35102[5] Neustupa J.: 
Partial regularity of weak solutions to the Navier-Stokes equations in the class $L^\infty(0,T,L^3(Ømega)^3)$. J. Math. Fluid Mech. 1 (1999), 309-325. 
MR 1738173[6] Neustupa J.: A removable singularity of a suitable weak solution to the Navier-Stokes equations. preprint.
[7] Nečas J., Neustupa J.: New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations. preprint.
[8] Skalák Z.: Removable Singularities of Weak Solutions of the Navier-Stokes Equations. Proceedings of the $4^{th}$ Seminar ``Euler and Navier-Stokes Equations (Theory, Numerical Solution, Applications)'', Institute of Thermomechanics AS CR, Editors: K. Kozel, J. Příhoda, M. Feistauer, Prague, 2001, pp.121-124.
[9] Temam R.: 
Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford, revised edition, 1979. 
MR 0603444 | 
Zbl 0981.35001